Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU study provides new view of infant perceptual development

10.11.2004


A new study by a New York University professor suggests perceptual maturity in infants develops in the early months after birth as a result of piecing together fragments of the visual scene. The findings, published in the latest issue of Psychological Science, shed new light on our fundamental knowledge of how objects behave, giving weight to the scientific camp that argues such development is a "constructed" rather than an "innate" phenomenon.



Advocates of innate perception have based their conclusions on previous research, which typically measured perceptual abilities of four-month-olds and older infants. However, Scott Johnson, a professor of psychology and neural science who conducted the study, compared these abilities in both two- and four-month-olds, finding distinctions in the perceptual skills of the two groups.

"These results are only a part of the larger literature on perception, but this study does provide a very important piece of the puzzle," said Johnson. "It is now clear that theories of innate knowledge do not hold up under scrutiny. Instead, the developing visual system seems to build object representations from smaller, visible components, such as the visible portions of a partly occluded object. Isolating how and why this occurs should be the focal point of subsequent scholarship."


The question of how humans develop knowledge of the perceptual appearance of objects--such as the realization that a view of an object that is partly obscured does not match its true extent--is an ongoing puzzle in cognitive science. Previously, scientists believed that infants learned this concept through manual exploration in order to gauge the actual physical size of the objects they see. But subsequent research had indicated that infants seem to know about object occlusion even before they can reach, leading to the theory that object knowledge is something that infants are simply born with. These latest findings provide a new view, implying that perceptual development in infants emerges from a combination of experience and brain development.

"How and when we develop knowledge of the mechanics of how the world works are fundamental questions in psychology research," Johnson explained. "Previous studies showing perception of occlusion in four-month-olds concluded that these characteristics must be innate because of the young age of the research subjects. However, these abilities hadn’t been explored in younger babies."

Johnson’s study explored how infants process two parts of a visual environment--specifically, when they see two elements moving, can they determine if the elements are part of a singular object. Theories of innate object knowledge have long held that if infants can detect "correlated" motion of two or more elements in a visual scene, then the elements are automatically thought to be part of the same object. Johnson tested whether this is actually true by measuring both motion perception and unity perception in the same display, consisting of a partly hidden rod whose visible parts protruded from behind a box. He reported that even the two-month-olds reliably detected the rod parts’ motion, but nevertheless could not join the visibly moving parts into a coherent object except under limited circumstances.

Johnson measured the infants’ ability to make these distinctions by showing them a series of computer-generated displays. Those who recognized each display as different from the previous ones--and responded by viewing it for sustained amounts of time--were those who comprehended the characteristics of the moving rod. Johnson did not find differences associated with the gender of the infants in his research.

"Another implication of these findings is that infants do not necessarily benefit in any meaningful way from stimulating toys or exercises," Johnson added. "Babies learn these concepts quickly through visual observation rather than enrichment, direct instruction, or manual object manipulation. Parents need not feel that they can improve their infants’ IQ or brainpower through special procedures or materials. Social interaction, however, is a different story--infants benefit greatly from one-on-one time with other people."

He added that his and other studies may serve as a precursor to research that can shed light on the factors contributing to developmental delays in cognitive skills.

"As we broaden our understanding of neurological development in infants, we can advance our comprehension of many developmental difficulties, such as autism, and devise early interventions," Johnson noted. "This is currently an area of intense research focus."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>