Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution may cause and speed up artery disease

08.11.2004


Air pollution may trigger and accelerate narrowing of carotid arteries, according to a study presented at the American Heart Association’s Scientific Sessions 2004.



Researchers found an association between long-term air pollution exposure and the early stages of atherosclerosis (hardening of the arteries). "We knew that people in more polluted areas die earlier from cardiovascular disease, but it was not clear how early in the disease process air pollution contributes. Our study found that air pollution may contribute to cardiovascular problems at a very early stage of the disease, similar to smoking, and enhances atherosclerosis, which is the underlying disease process of cardiovascular diseases," said study author Nino Kuenzli, M.D., Ph.D., associate professor, division of environmental health, Keck School of Medicine at the University of Southern California in Los Angeles.

Researchers reviewed data from two clinical trials on 798 people age 40 and older who lived in the Los Angeles area. The data included baseline measurements of the thickness of the inner lining of participants’ neck arteries (carotid artery intima-media thickness or CIMT). CIMT is measured by ultrasound and used to determine the level of subclinical atherosclerosis.


Researchers then assigned a PM2.5 particle level to the study subjects’ home ZIP codes. PM2.5 particles are pollutants with a diameter of 2.5 micrometers or less. They are commonly produced by burning fossil fuels such as driving cars, and smelting and processing metals. They are tiny enough to be inhaled into the smallest airways. PM2.5 levels are measured in micrograms per meter cubed (ug/m3). In this study, readings ranged from 5.2 to 26.9 ug/m3.

For every 10 ug/m3 increase of PM2.5, CIMT increased by 5.9 percent. After adjusting for age, socio-demographic, lifestyle (including active and passive smoking) and physiological factors, researchers determined that CIMT rose by 3.9 percent to 4.3 percent for every 10 ug/m3 increase in PM2.5. The association between air pollution and CIMT was even greater among people over age 60, women and people taking cholesterol-lowering medication. Overall, the strongest association was seen in women age 60 or older, with a 15.7 percent increase in CIMT for every 10 ug/m3 increase of PM2.5.

Kuenzli said that the air pollution causes the body to produce oxidants (unstable molecules) that cause inflammatory reactions in both the respiratory tract and blood vessels, triggering artery damage. Some air particles find their way into the blood or even the brain, he said. Other constituents of air pollution may be neutralized locally, but secondary reaction products may still cause systemic responses. "The responses may involve both the autonomic nervous system (which controls breathing and blood pressure) and inflammation in the blood. Both pathways together can lead to a state of subclinical chronic inflammation, causing adverse consequences in the blood vessels where oxidized lipids damage the artery walls. This can lead to thickening of the artery wall, calcification and plaques – and ultimately ruptures," Kuenzli said.

"It is interesting that the effects of air pollution were particularly strong in older women. Also, those with increased cardiovascular risk profiles appeared to be at higher risk of an association between air pollution and narrowing of the arteries," he said. "However, the study is too small and not designed to clarify whether effects are truly different in men and women, old and young, or whether part of the differences are caused by uncertainties such as in how exposure was assessed," Kuenzli said. "Given that cardiovascular disease is the leading cause of death, and that large populations are exposed to ambient PM2.5 at the levels observed in this study, these findings need to be corroborated. The public health implications could be immense," he said.

Co-authors are Wendy J. Mack, Ph.D.; Howard N. Hodis, M.D.; Michael Jerrett, Ph.D.; Laurie LaBree, M.S.; Frank Gilliland, M.D., Ph.D.; Duncan Thomas, Ph.D.; John Peters, M.D., Sc.D.; and doctoral student Bernardo Beckermann.

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>