Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell enzyme may help suppress cancer development

05.11.2004


A new study shows that an enzyme that normally alters the activity of other protein molecules in cells may also help prevent cancer.

The enzyme is known as PTPRO (for "protein tyrosine phosphatase receptor-type O"). When the gene responsible for producing PTPRO is silenced, as can happen in lung cancer, for example, the amount of the enzyme drops, allowing the cells to grow when they shouldn’t.

The research, led by investigators at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, may offer a new target for cancer therapy and may lead to new ways to diagnose some cancers and determine a patient’s prognosis and response to treatment.



The findings were published in a recent issue of the Proceedings of the National Academy of Sciences. "This appears to be the first report of an enzyme also serving as a tumor suppressor," says study leader Samson T. Jacob, William C. and Joan E. Davis Professor in cancer research and professor of molecular and cellular biochemistry and internal medicine. "It shouldn’t come as a surprise, however, because of the nature of this enzyme."

PTPRO removes phosphate groups from the amino-acid tyrosine found in specific proteins. Some proteins become activated and some become inactivated when phosphate groups are removed. It is likely that the silencing of PTPRO alters the phosphate levels of some of these proteins and helps initiate processes that lead to cancer.

In this study, Jacob and his colleagues show that the PTPRO gene is silenced gradually by a process known as methylation. Methylation causes the addition of small chemical units known as methyl groups to a gene. As methyl units accumulate on a gene, the gene become less active and fewer copies of its protein are made.

In this case, silencing of the PTPRO gene causes a drop in the level of the PTPRO enzyme. That, in turn, affects certain proteins that PTPRO acts on, furthering the cancer process. When the loss or silencing of a gene contributes to cancer, the gene is called a tumor-suppressor gene. That is, the normal activity of the gene suppresses cancer development.

xamined the PTPRO gene for methylation in 43 primary human lung tumors and their matching normal adjacent tissue. Fifty-one percent of the tumor samples were heavily methylated, while the gene in the adjacent normal tissue was essentially methylation-free.

When the researchers modified laboratory-grown human lung-cancer cells to over-produce the PTPRO enzyme, they showed that the cells proliferated more slowly and more often died from programmed cell death -- apoptosis

In addition, when the researchers used a chemical to remove the methylation in a cancer-cell line, it slowed the growth of the cells, again suggesting that the presence of the PTPRO gene and its enzyme slowed the cancer process.

Taken together, the evidence strongly suggests that the PTPRO gene is a tumor suppressor gene. If further research verifies the importance of the PTPRO gene to the cancer process, it may mean that measuring the degree of methylation of this gene in a patient’s tumor will tell doctors something about the level of danger posed by that tumor or whether the tumor is responding well to treatment.

Jacob and his colleagues are now working to identify the proteins that the PTPRO enzyme interacts with, and they are analyzing samples from a wide range of cancers to learn which ones also show silencing of the PTPRO gene.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>