Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell enzyme may help suppress cancer development

05.11.2004


A new study shows that an enzyme that normally alters the activity of other protein molecules in cells may also help prevent cancer.

The enzyme is known as PTPRO (for "protein tyrosine phosphatase receptor-type O"). When the gene responsible for producing PTPRO is silenced, as can happen in lung cancer, for example, the amount of the enzyme drops, allowing the cells to grow when they shouldn’t.

The research, led by investigators at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, may offer a new target for cancer therapy and may lead to new ways to diagnose some cancers and determine a patient’s prognosis and response to treatment.



The findings were published in a recent issue of the Proceedings of the National Academy of Sciences. "This appears to be the first report of an enzyme also serving as a tumor suppressor," says study leader Samson T. Jacob, William C. and Joan E. Davis Professor in cancer research and professor of molecular and cellular biochemistry and internal medicine. "It shouldn’t come as a surprise, however, because of the nature of this enzyme."

PTPRO removes phosphate groups from the amino-acid tyrosine found in specific proteins. Some proteins become activated and some become inactivated when phosphate groups are removed. It is likely that the silencing of PTPRO alters the phosphate levels of some of these proteins and helps initiate processes that lead to cancer.

In this study, Jacob and his colleagues show that the PTPRO gene is silenced gradually by a process known as methylation. Methylation causes the addition of small chemical units known as methyl groups to a gene. As methyl units accumulate on a gene, the gene become less active and fewer copies of its protein are made.

In this case, silencing of the PTPRO gene causes a drop in the level of the PTPRO enzyme. That, in turn, affects certain proteins that PTPRO acts on, furthering the cancer process. When the loss or silencing of a gene contributes to cancer, the gene is called a tumor-suppressor gene. That is, the normal activity of the gene suppresses cancer development.

xamined the PTPRO gene for methylation in 43 primary human lung tumors and their matching normal adjacent tissue. Fifty-one percent of the tumor samples were heavily methylated, while the gene in the adjacent normal tissue was essentially methylation-free.

When the researchers modified laboratory-grown human lung-cancer cells to over-produce the PTPRO enzyme, they showed that the cells proliferated more slowly and more often died from programmed cell death -- apoptosis

In addition, when the researchers used a chemical to remove the methylation in a cancer-cell line, it slowed the growth of the cells, again suggesting that the presence of the PTPRO gene and its enzyme slowed the cancer process.

Taken together, the evidence strongly suggests that the PTPRO gene is a tumor suppressor gene. If further research verifies the importance of the PTPRO gene to the cancer process, it may mean that measuring the degree of methylation of this gene in a patient’s tumor will tell doctors something about the level of danger posed by that tumor or whether the tumor is responding well to treatment.

Jacob and his colleagues are now working to identify the proteins that the PTPRO enzyme interacts with, and they are analyzing samples from a wide range of cancers to learn which ones also show silencing of the PTPRO gene.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>