Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola begins study on blood substitute in trauma patients at the scene of injury

04.11.2004


Loyola University Health System begins today the national clinical trial using PolyHeme®, an investigational oxygen-carrying blood substitute designed to increase survival of critically injured and bleeding trauma patients at the scene of injury. Loyola has been involved in extensive public education, staff education and paramedic training since its Institutional Review Board for the Protection of Human Research Subjects (IRB) approved the clinical trial in May. Loyola is one of 20-25 Level I trauma centers which will participate in the trial nationwide and the only one in Illinois.

“If the blood substitute works the way we hope it will, it could be the first major advance since the introduction of saline, or salt water, to replace volume after blood loss, around the time of World War I,” said Dr. Richard L. Gamelli, principal investigator, chair of the Department of Surgery and professor of trauma surgery, Loyola University Chicago Stritch School of Medicine. Currently, patients can only receive blood in a hospital and that means a trauma victim may need to wait up to an hour for a transfusion following transport to the hospital and being typed and cross-matched. “Saline, the current standard of care, helps us restore a patient’s blood pressure but does not deliver oxygen, a critical nutrient to prevent organ damage in the brain, heart, lungs, liver and kidneys,” Gamelli explained. “Carrying blood in an ambulance isn’t practical because it needs to be refrigerated, has a short shelf life and needs to be typed and cross-matched to the specific patient. In contrast, the blood substitute carries oxygen, has a long shelf life and is compatible with all blood types,” said Gamelli, who also is chief of Loyola’s Burn Center and director of Loyola’s Burn and Shock Trauma Institute.

In order to receive approval for the field component of this clinical trial, U.S. Food and Drug Administration regulations and Loyola’s IRB required evidence that broad public notification has been made to ensure members of the public have an opportunity to share their concerns. In addition to the community outreach efforts, members of the public had the opportunity to provide feedback on the Web, via e-mail, through a dedicated phone line, and in-person at eight community meetings.



Loyola will use the blood substitute in some patients on its LIFESTAR® aeromedical unit and in the Illinois communities of Berwyn, Hillside and Northlake, which participate in Loyola’s Emergency Medical Services (EMS) network. These communities have extensive experience with trauma because of their proximity to major highways. Loyola’s LIFESTAR staff (paramedic and/or nurse) will administer the blood substitute to victims of motor vehicle crashes on major Chicago-area highways or other trauma situations. The study will begin with LIFESTAR and be introduced into communities overtime. “Getting an oxygen-carrying blood substitute into our patients at the scene of injury could increase their chance of survival,” said Gamelli. “Right now, one in five Americans die of trauma-related injuries, which are the leading cause of death for Americans under the age of 45.”

During the study, every effort will be made to receive consent from the patient or the patient’s family. If there is an objection in advance from the patient or the patient’s family, he or she will not receive the blood substitute. Use of the blood substitute can be stopped at anytime during the trial based on patient or family request.

Under the study protocol, treatment will begin before arrival at the hospital, either at the scene of the injury, in the ambulance or in LIFESTAR® (Loyola’s helicopter paramedic unit/air ambulance), and continue during a 12-hour post-injury period in the hospital. Because blood is not currently carried in ambulances, the use of the blood substitute in these settings has the potential to address a critical unmet medical need. For patients meeting study entry criteria, half the patients will receive the blood substitute and the other half will receive the current standard of care, which is saline solution or salt water. The study will compare the survival rate of patients receiving the blood substitute to that of patients who receive saline solution. In previous studies, the substitute has been well-tolerated. During the clinical trial, members of the public may continue to learn about the study and provide feedback by visiting Loyola’s Web site: www.luhs.org/bloodsubstitute.

Members of the public who do not want to be enrolled in the study may receive a bracelet stating “I Decline the Northfield PolyHeme® Study.” They may call the study hotline, (708) 327-2452 or send an e-mail to: bloodsubstitute@lumc.edu. The study is sponsored by the blood substitute manufacturer, Northfield Laboratories Inc., based in Evanston, Ill.

Loyola’s IRB, a body responsible for the initial and continuing review and approval of the research, will oversee this study. Criteria for patients to be enrolled in the study include: patients are in a life-threatening situation requiring emergency medical intervention; currently available treatments are unsatisfactory; potential risks are reasonable; participation in the study could help some patients; and the research could not be practicably conducted without an exception from informed consent requirements.

Stephen Davidow | EurekAlert!
Further information:
http://www.luhs.org/bloodsubstitute

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>