Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola begins study on blood substitute in trauma patients at the scene of injury

04.11.2004


Loyola University Health System begins today the national clinical trial using PolyHeme®, an investigational oxygen-carrying blood substitute designed to increase survival of critically injured and bleeding trauma patients at the scene of injury. Loyola has been involved in extensive public education, staff education and paramedic training since its Institutional Review Board for the Protection of Human Research Subjects (IRB) approved the clinical trial in May. Loyola is one of 20-25 Level I trauma centers which will participate in the trial nationwide and the only one in Illinois.

“If the blood substitute works the way we hope it will, it could be the first major advance since the introduction of saline, or salt water, to replace volume after blood loss, around the time of World War I,” said Dr. Richard L. Gamelli, principal investigator, chair of the Department of Surgery and professor of trauma surgery, Loyola University Chicago Stritch School of Medicine. Currently, patients can only receive blood in a hospital and that means a trauma victim may need to wait up to an hour for a transfusion following transport to the hospital and being typed and cross-matched. “Saline, the current standard of care, helps us restore a patient’s blood pressure but does not deliver oxygen, a critical nutrient to prevent organ damage in the brain, heart, lungs, liver and kidneys,” Gamelli explained. “Carrying blood in an ambulance isn’t practical because it needs to be refrigerated, has a short shelf life and needs to be typed and cross-matched to the specific patient. In contrast, the blood substitute carries oxygen, has a long shelf life and is compatible with all blood types,” said Gamelli, who also is chief of Loyola’s Burn Center and director of Loyola’s Burn and Shock Trauma Institute.

In order to receive approval for the field component of this clinical trial, U.S. Food and Drug Administration regulations and Loyola’s IRB required evidence that broad public notification has been made to ensure members of the public have an opportunity to share their concerns. In addition to the community outreach efforts, members of the public had the opportunity to provide feedback on the Web, via e-mail, through a dedicated phone line, and in-person at eight community meetings.



Loyola will use the blood substitute in some patients on its LIFESTAR® aeromedical unit and in the Illinois communities of Berwyn, Hillside and Northlake, which participate in Loyola’s Emergency Medical Services (EMS) network. These communities have extensive experience with trauma because of their proximity to major highways. Loyola’s LIFESTAR staff (paramedic and/or nurse) will administer the blood substitute to victims of motor vehicle crashes on major Chicago-area highways or other trauma situations. The study will begin with LIFESTAR and be introduced into communities overtime. “Getting an oxygen-carrying blood substitute into our patients at the scene of injury could increase their chance of survival,” said Gamelli. “Right now, one in five Americans die of trauma-related injuries, which are the leading cause of death for Americans under the age of 45.”

During the study, every effort will be made to receive consent from the patient or the patient’s family. If there is an objection in advance from the patient or the patient’s family, he or she will not receive the blood substitute. Use of the blood substitute can be stopped at anytime during the trial based on patient or family request.

Under the study protocol, treatment will begin before arrival at the hospital, either at the scene of the injury, in the ambulance or in LIFESTAR® (Loyola’s helicopter paramedic unit/air ambulance), and continue during a 12-hour post-injury period in the hospital. Because blood is not currently carried in ambulances, the use of the blood substitute in these settings has the potential to address a critical unmet medical need. For patients meeting study entry criteria, half the patients will receive the blood substitute and the other half will receive the current standard of care, which is saline solution or salt water. The study will compare the survival rate of patients receiving the blood substitute to that of patients who receive saline solution. In previous studies, the substitute has been well-tolerated. During the clinical trial, members of the public may continue to learn about the study and provide feedback by visiting Loyola’s Web site: www.luhs.org/bloodsubstitute.

Members of the public who do not want to be enrolled in the study may receive a bracelet stating “I Decline the Northfield PolyHeme® Study.” They may call the study hotline, (708) 327-2452 or send an e-mail to: bloodsubstitute@lumc.edu. The study is sponsored by the blood substitute manufacturer, Northfield Laboratories Inc., based in Evanston, Ill.

Loyola’s IRB, a body responsible for the initial and continuing review and approval of the research, will oversee this study. Criteria for patients to be enrolled in the study include: patients are in a life-threatening situation requiring emergency medical intervention; currently available treatments are unsatisfactory; potential risks are reasonable; participation in the study could help some patients; and the research could not be practicably conducted without an exception from informed consent requirements.

Stephen Davidow | EurekAlert!
Further information:
http://www.luhs.org/bloodsubstitute

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>