Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola begins study on blood substitute in trauma patients at the scene of injury

04.11.2004


Loyola University Health System begins today the national clinical trial using PolyHeme®, an investigational oxygen-carrying blood substitute designed to increase survival of critically injured and bleeding trauma patients at the scene of injury. Loyola has been involved in extensive public education, staff education and paramedic training since its Institutional Review Board for the Protection of Human Research Subjects (IRB) approved the clinical trial in May. Loyola is one of 20-25 Level I trauma centers which will participate in the trial nationwide and the only one in Illinois.

“If the blood substitute works the way we hope it will, it could be the first major advance since the introduction of saline, or salt water, to replace volume after blood loss, around the time of World War I,” said Dr. Richard L. Gamelli, principal investigator, chair of the Department of Surgery and professor of trauma surgery, Loyola University Chicago Stritch School of Medicine. Currently, patients can only receive blood in a hospital and that means a trauma victim may need to wait up to an hour for a transfusion following transport to the hospital and being typed and cross-matched. “Saline, the current standard of care, helps us restore a patient’s blood pressure but does not deliver oxygen, a critical nutrient to prevent organ damage in the brain, heart, lungs, liver and kidneys,” Gamelli explained. “Carrying blood in an ambulance isn’t practical because it needs to be refrigerated, has a short shelf life and needs to be typed and cross-matched to the specific patient. In contrast, the blood substitute carries oxygen, has a long shelf life and is compatible with all blood types,” said Gamelli, who also is chief of Loyola’s Burn Center and director of Loyola’s Burn and Shock Trauma Institute.

In order to receive approval for the field component of this clinical trial, U.S. Food and Drug Administration regulations and Loyola’s IRB required evidence that broad public notification has been made to ensure members of the public have an opportunity to share their concerns. In addition to the community outreach efforts, members of the public had the opportunity to provide feedback on the Web, via e-mail, through a dedicated phone line, and in-person at eight community meetings.



Loyola will use the blood substitute in some patients on its LIFESTAR® aeromedical unit and in the Illinois communities of Berwyn, Hillside and Northlake, which participate in Loyola’s Emergency Medical Services (EMS) network. These communities have extensive experience with trauma because of their proximity to major highways. Loyola’s LIFESTAR staff (paramedic and/or nurse) will administer the blood substitute to victims of motor vehicle crashes on major Chicago-area highways or other trauma situations. The study will begin with LIFESTAR and be introduced into communities overtime. “Getting an oxygen-carrying blood substitute into our patients at the scene of injury could increase their chance of survival,” said Gamelli. “Right now, one in five Americans die of trauma-related injuries, which are the leading cause of death for Americans under the age of 45.”

During the study, every effort will be made to receive consent from the patient or the patient’s family. If there is an objection in advance from the patient or the patient’s family, he or she will not receive the blood substitute. Use of the blood substitute can be stopped at anytime during the trial based on patient or family request.

Under the study protocol, treatment will begin before arrival at the hospital, either at the scene of the injury, in the ambulance or in LIFESTAR® (Loyola’s helicopter paramedic unit/air ambulance), and continue during a 12-hour post-injury period in the hospital. Because blood is not currently carried in ambulances, the use of the blood substitute in these settings has the potential to address a critical unmet medical need. For patients meeting study entry criteria, half the patients will receive the blood substitute and the other half will receive the current standard of care, which is saline solution or salt water. The study will compare the survival rate of patients receiving the blood substitute to that of patients who receive saline solution. In previous studies, the substitute has been well-tolerated. During the clinical trial, members of the public may continue to learn about the study and provide feedback by visiting Loyola’s Web site: www.luhs.org/bloodsubstitute.

Members of the public who do not want to be enrolled in the study may receive a bracelet stating “I Decline the Northfield PolyHeme® Study.” They may call the study hotline, (708) 327-2452 or send an e-mail to: bloodsubstitute@lumc.edu. The study is sponsored by the blood substitute manufacturer, Northfield Laboratories Inc., based in Evanston, Ill.

Loyola’s IRB, a body responsible for the initial and continuing review and approval of the research, will oversee this study. Criteria for patients to be enrolled in the study include: patients are in a life-threatening situation requiring emergency medical intervention; currently available treatments are unsatisfactory; potential risks are reasonable; participation in the study could help some patients; and the research could not be practicably conducted without an exception from informed consent requirements.

Stephen Davidow | EurekAlert!
Further information:
http://www.luhs.org/bloodsubstitute

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>