Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cancer trials finds significant safety improvement

03.11.2004


Risk of dying from experimental cancer treatment drops by 90 percent over 12 years



The chance that patients participating in early-stage cancer research studies will die from the experimental treatments has dropped dramatically over the past decade, according to a study from the Massachusetts General Hospital (MGH) Cancer Center and the Massachusetts Institute of Technology (MIT). In an analysis of more than 200 Phase 1 research trials from 1991 through 2002, the researchers found that treatment-related deaths decreased by 90 percent during the study period. The report appears in the November 3 Journal of the American Medical Association.

"We undertook this study because there has been so much concern in recent years about the safety of clinical trials. We wanted to see if the increased attention to patient safety had made a difference and if the addition of targeted therapies, which tend to be less toxic, had also helped," says Thomas Roberts Jr., MD, of the MGH Cancer Center, the paper’s lead author. "Now we can tell patients with cancer that, compared with 10 years ago, they can expect a higher level of safety when they enroll in early-stage clinical trials."


Representing the first time potential new drugs are tested in humans, phase 1 trials have a goal of assuring drug safety and determining the best dosage. While most of these early-stage studies enroll healthy volunteers, cancer studies have several important differences. Phase 1 cancer studies are usually restricted to patients with cancer who have exhausted established therapeutic options. While identifying toxic effects is the primary goal of most Phase 1 studies, cancer trials also have a secondary goal of evaluating anti-tumor effects.

Since there had been no comprehensive analysis of Phase 1 trials since the mid-1980s, the researchers compiled a database of Phase 1 trial results reported at the annual meeting of the American Society for Clinical Oncology from 1991 through 2002. In order to insure that the studies were comparable, the investigators focused on published studies of single agents that had not yet received FDA approval and excluded those involving radiation therapy or treatment of leukemia or lymphoma. This strategy narrowed the study group down to 213 trials, enrolling aproximately 6,500 patients. For these studies, the researchers analyzed how often participants died from drug toxicity, cancer-related deaths, other toxic treatment effects, and whether or not the treatment caused the tumor to shrink, as measured by CT scanning.

The most significant change during the study period was the more than 90 percent drop in the risk of drug-related deaths – from a risk of about 1 percent in the first four years of the study to .06 percent in the last four years. The chance that the tested drug would have a measurable anti-tumor effect also dropped during the study period but by only 50 percent, suggesting a possible improvement in the overall risk/benefit ratio.

The researchers cite several possible reasons for the improvements in safety, including increased attention to patient safety regulations, the use of less-toxic targeted therapies, and improvements in supportive care, such as new treatments for chemotherapy-induced anemia and neutropenia. While they were surprised and concerned about the reduced chance of a therapeutic benefit, Roberts explains several potential underlying reasons. "We have gotten more systematic in the determination of response rates, so the later results may be more accurate," he says. "In addition, some of the newer agents like angiogenesis inhibitors, could be stopping cancer progression without actually shrinking the tumor. We may need to find new ways to measure treatment success."

Roberts continues, "Many investigators feel frustrated about the regulatory hurdles they have to go through to initiate and conduct clinical trials. There will always be a balance between optimizing patient safety and conducting research efficiently. We need to be aware of that balance and to find ways to monitor patient safety in real time." Roberts is an instructor in Medicine at Harvard Medical School and visiting scientist at MIT.

Roberts’ co-authors are Bernardo Goulart, MD, Bruce Chabner, MD, and Jeffrey Clark, MD of the MGH Cancer Center; Elkan Halpern, PhD, and G. Scott Gazelle, MD, MPH, PhD, of the MGH Institute of Technology Assessment; and Sarah Stallings, PhD, Stan Finkelstein, MD, and Lee Squitieri of Massachusetts Institute of Technology. The study was supported by grants from the Alfred P. Sloan Foundation and the National Cancer Institute.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>