Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cancer trials finds significant safety improvement

03.11.2004


Risk of dying from experimental cancer treatment drops by 90 percent over 12 years



The chance that patients participating in early-stage cancer research studies will die from the experimental treatments has dropped dramatically over the past decade, according to a study from the Massachusetts General Hospital (MGH) Cancer Center and the Massachusetts Institute of Technology (MIT). In an analysis of more than 200 Phase 1 research trials from 1991 through 2002, the researchers found that treatment-related deaths decreased by 90 percent during the study period. The report appears in the November 3 Journal of the American Medical Association.

"We undertook this study because there has been so much concern in recent years about the safety of clinical trials. We wanted to see if the increased attention to patient safety had made a difference and if the addition of targeted therapies, which tend to be less toxic, had also helped," says Thomas Roberts Jr., MD, of the MGH Cancer Center, the paper’s lead author. "Now we can tell patients with cancer that, compared with 10 years ago, they can expect a higher level of safety when they enroll in early-stage clinical trials."


Representing the first time potential new drugs are tested in humans, phase 1 trials have a goal of assuring drug safety and determining the best dosage. While most of these early-stage studies enroll healthy volunteers, cancer studies have several important differences. Phase 1 cancer studies are usually restricted to patients with cancer who have exhausted established therapeutic options. While identifying toxic effects is the primary goal of most Phase 1 studies, cancer trials also have a secondary goal of evaluating anti-tumor effects.

Since there had been no comprehensive analysis of Phase 1 trials since the mid-1980s, the researchers compiled a database of Phase 1 trial results reported at the annual meeting of the American Society for Clinical Oncology from 1991 through 2002. In order to insure that the studies were comparable, the investigators focused on published studies of single agents that had not yet received FDA approval and excluded those involving radiation therapy or treatment of leukemia or lymphoma. This strategy narrowed the study group down to 213 trials, enrolling aproximately 6,500 patients. For these studies, the researchers analyzed how often participants died from drug toxicity, cancer-related deaths, other toxic treatment effects, and whether or not the treatment caused the tumor to shrink, as measured by CT scanning.

The most significant change during the study period was the more than 90 percent drop in the risk of drug-related deaths – from a risk of about 1 percent in the first four years of the study to .06 percent in the last four years. The chance that the tested drug would have a measurable anti-tumor effect also dropped during the study period but by only 50 percent, suggesting a possible improvement in the overall risk/benefit ratio.

The researchers cite several possible reasons for the improvements in safety, including increased attention to patient safety regulations, the use of less-toxic targeted therapies, and improvements in supportive care, such as new treatments for chemotherapy-induced anemia and neutropenia. While they were surprised and concerned about the reduced chance of a therapeutic benefit, Roberts explains several potential underlying reasons. "We have gotten more systematic in the determination of response rates, so the later results may be more accurate," he says. "In addition, some of the newer agents like angiogenesis inhibitors, could be stopping cancer progression without actually shrinking the tumor. We may need to find new ways to measure treatment success."

Roberts continues, "Many investigators feel frustrated about the regulatory hurdles they have to go through to initiate and conduct clinical trials. There will always be a balance between optimizing patient safety and conducting research efficiently. We need to be aware of that balance and to find ways to monitor patient safety in real time." Roberts is an instructor in Medicine at Harvard Medical School and visiting scientist at MIT.

Roberts’ co-authors are Bernardo Goulart, MD, Bruce Chabner, MD, and Jeffrey Clark, MD of the MGH Cancer Center; Elkan Halpern, PhD, and G. Scott Gazelle, MD, MPH, PhD, of the MGH Institute of Technology Assessment; and Sarah Stallings, PhD, Stan Finkelstein, MD, and Lee Squitieri of Massachusetts Institute of Technology. The study was supported by grants from the Alfred P. Sloan Foundation and the National Cancer Institute.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>