Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cancer trials finds significant safety improvement

03.11.2004


Risk of dying from experimental cancer treatment drops by 90 percent over 12 years



The chance that patients participating in early-stage cancer research studies will die from the experimental treatments has dropped dramatically over the past decade, according to a study from the Massachusetts General Hospital (MGH) Cancer Center and the Massachusetts Institute of Technology (MIT). In an analysis of more than 200 Phase 1 research trials from 1991 through 2002, the researchers found that treatment-related deaths decreased by 90 percent during the study period. The report appears in the November 3 Journal of the American Medical Association.

"We undertook this study because there has been so much concern in recent years about the safety of clinical trials. We wanted to see if the increased attention to patient safety had made a difference and if the addition of targeted therapies, which tend to be less toxic, had also helped," says Thomas Roberts Jr., MD, of the MGH Cancer Center, the paper’s lead author. "Now we can tell patients with cancer that, compared with 10 years ago, they can expect a higher level of safety when they enroll in early-stage clinical trials."


Representing the first time potential new drugs are tested in humans, phase 1 trials have a goal of assuring drug safety and determining the best dosage. While most of these early-stage studies enroll healthy volunteers, cancer studies have several important differences. Phase 1 cancer studies are usually restricted to patients with cancer who have exhausted established therapeutic options. While identifying toxic effects is the primary goal of most Phase 1 studies, cancer trials also have a secondary goal of evaluating anti-tumor effects.

Since there had been no comprehensive analysis of Phase 1 trials since the mid-1980s, the researchers compiled a database of Phase 1 trial results reported at the annual meeting of the American Society for Clinical Oncology from 1991 through 2002. In order to insure that the studies were comparable, the investigators focused on published studies of single agents that had not yet received FDA approval and excluded those involving radiation therapy or treatment of leukemia or lymphoma. This strategy narrowed the study group down to 213 trials, enrolling aproximately 6,500 patients. For these studies, the researchers analyzed how often participants died from drug toxicity, cancer-related deaths, other toxic treatment effects, and whether or not the treatment caused the tumor to shrink, as measured by CT scanning.

The most significant change during the study period was the more than 90 percent drop in the risk of drug-related deaths – from a risk of about 1 percent in the first four years of the study to .06 percent in the last four years. The chance that the tested drug would have a measurable anti-tumor effect also dropped during the study period but by only 50 percent, suggesting a possible improvement in the overall risk/benefit ratio.

The researchers cite several possible reasons for the improvements in safety, including increased attention to patient safety regulations, the use of less-toxic targeted therapies, and improvements in supportive care, such as new treatments for chemotherapy-induced anemia and neutropenia. While they were surprised and concerned about the reduced chance of a therapeutic benefit, Roberts explains several potential underlying reasons. "We have gotten more systematic in the determination of response rates, so the later results may be more accurate," he says. "In addition, some of the newer agents like angiogenesis inhibitors, could be stopping cancer progression without actually shrinking the tumor. We may need to find new ways to measure treatment success."

Roberts continues, "Many investigators feel frustrated about the regulatory hurdles they have to go through to initiate and conduct clinical trials. There will always be a balance between optimizing patient safety and conducting research efficiently. We need to be aware of that balance and to find ways to monitor patient safety in real time." Roberts is an instructor in Medicine at Harvard Medical School and visiting scientist at MIT.

Roberts’ co-authors are Bernardo Goulart, MD, Bruce Chabner, MD, and Jeffrey Clark, MD of the MGH Cancer Center; Elkan Halpern, PhD, and G. Scott Gazelle, MD, MPH, PhD, of the MGH Institute of Technology Assessment; and Sarah Stallings, PhD, Stan Finkelstein, MD, and Lee Squitieri of Massachusetts Institute of Technology. The study was supported by grants from the Alfred P. Sloan Foundation and the National Cancer Institute.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>