Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar study demonstrates heritability of non-genomic information

02.11.2004


It’s one of the defining tenets of modern biology: The characteristics of a living organism are coded into the organism’s DNA, and only information in the DNA can be passed to the organism’s offspring.



A new study by scientists at The Wistar Institute, however, suggests that this is not the full story. Instructions that control gene activity and are recorded solely in the molecular packaging of the DNA can also be passed to an organism’s progeny, according to the new data. This heritable information is distinct from the genetic information coded in the DNA and is referred to by scientists as being "epigenetic" in nature. A report on the study appears in the November 1 issue of Genes & Development.

"The implication of our findings is that, parallel to the genetic information in our DNA, we also inherit epigenetic information to ensure that the regulation of our genes is executed correctly," says Jumin Zhou, Ph.D., an assistant professor in the gene expression and regulation program at Wistar and senior author on the new study.


In their experiments with fruit flies, Zhou and his colleagues investigated certain regulatory elements involved in controlling the homeotic gene complex, a large and complex gene region responsible for the proper development of the basic body plan. These vital genes have been highly conserved in evolution, appearing in species as divergent as fruit flies, mice, and humans. Large genes often employ highly sophisticated regulatory mechanisms: a mandatory promoter that activates transcription of the gene, enhancers that send instructions to the promoter, and specialized regulatory DNA elements such as insulators that can block or augment communication between enhancers and the promoter.

Zhou’s team studied a regulatory element called the Promoter Targeting Sequence, or PTS. They showed that the PTS overcomes an insulator to facilitate, but also restrict, the activity of distant enhancers of a single promoter. Intriguingly, however, they also found that while the PTS required the insulator to target its designated promoter, the insulator could then be removed from the system without effect: With the PTS alone, no activity was seen. With the PTS and the insulator, the PTS effectively targeted its promoter. Then, with the insulator removed, PTS continued to target its promoter.

"The insulator was required to initiate a genetic process," Zhou says. "But then, even without the presence of the insulator, and even though no change was made to the gene, the process was self-perpetuating through multiple generations. This evidence points strongly to the fact of epigenetic inheritance."

The notion that epigenetic alterations can be passed from generation to generation complicates the standard model of genetics. Scientists have long held the view that acquired changes in the regulatory molecules associated with DNA are removed in the germ line cells, reset to a baseline state. Based on the current study, as well as other research conducted over the last few years, this does not appear to be entirely true.

These recent observations necessarily recall the theories of 19th Century scientist Jean-Baptiste Lamarck, who postulated that traits acquired by parents during their lives could be passed on to their offspring. Lamarck’s ideas about evolutionary process were overtaken in subsequent years by those of naturalist Charles Darwin and, later, the monk Gregor Mendel. Recent advances in epigenetics, however, have begun to suggest that Lamarck may have been at least partly correct, for reasons and in ways that he could never have anticipated.

"I don’t know of any example where an acquired trait has been written into the genome, into the DNA," says Zhou. "Still, it may be time to revisit the Lamarckian school of thought."

The lead author on the Genes & Development study is Qing Lin, Ph.D. Additional coauthors are Qi Chen, M.D., and Lan Lin, M.S. Assistant professor Jumin Zhou, Ph.D., is the senior author. All authors are based at The Wistar Institute. Funding for the research was provided by the National Institutes of Health, the March of Dimes Birth Defects Foundation, the Edward Mallinckrodt, Jr., Foundation, and the Concern Foundation.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>