Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar study demonstrates heritability of non-genomic information

02.11.2004


It’s one of the defining tenets of modern biology: The characteristics of a living organism are coded into the organism’s DNA, and only information in the DNA can be passed to the organism’s offspring.



A new study by scientists at The Wistar Institute, however, suggests that this is not the full story. Instructions that control gene activity and are recorded solely in the molecular packaging of the DNA can also be passed to an organism’s progeny, according to the new data. This heritable information is distinct from the genetic information coded in the DNA and is referred to by scientists as being "epigenetic" in nature. A report on the study appears in the November 1 issue of Genes & Development.

"The implication of our findings is that, parallel to the genetic information in our DNA, we also inherit epigenetic information to ensure that the regulation of our genes is executed correctly," says Jumin Zhou, Ph.D., an assistant professor in the gene expression and regulation program at Wistar and senior author on the new study.


In their experiments with fruit flies, Zhou and his colleagues investigated certain regulatory elements involved in controlling the homeotic gene complex, a large and complex gene region responsible for the proper development of the basic body plan. These vital genes have been highly conserved in evolution, appearing in species as divergent as fruit flies, mice, and humans. Large genes often employ highly sophisticated regulatory mechanisms: a mandatory promoter that activates transcription of the gene, enhancers that send instructions to the promoter, and specialized regulatory DNA elements such as insulators that can block or augment communication between enhancers and the promoter.

Zhou’s team studied a regulatory element called the Promoter Targeting Sequence, or PTS. They showed that the PTS overcomes an insulator to facilitate, but also restrict, the activity of distant enhancers of a single promoter. Intriguingly, however, they also found that while the PTS required the insulator to target its designated promoter, the insulator could then be removed from the system without effect: With the PTS alone, no activity was seen. With the PTS and the insulator, the PTS effectively targeted its promoter. Then, with the insulator removed, PTS continued to target its promoter.

"The insulator was required to initiate a genetic process," Zhou says. "But then, even without the presence of the insulator, and even though no change was made to the gene, the process was self-perpetuating through multiple generations. This evidence points strongly to the fact of epigenetic inheritance."

The notion that epigenetic alterations can be passed from generation to generation complicates the standard model of genetics. Scientists have long held the view that acquired changes in the regulatory molecules associated with DNA are removed in the germ line cells, reset to a baseline state. Based on the current study, as well as other research conducted over the last few years, this does not appear to be entirely true.

These recent observations necessarily recall the theories of 19th Century scientist Jean-Baptiste Lamarck, who postulated that traits acquired by parents during their lives could be passed on to their offspring. Lamarck’s ideas about evolutionary process were overtaken in subsequent years by those of naturalist Charles Darwin and, later, the monk Gregor Mendel. Recent advances in epigenetics, however, have begun to suggest that Lamarck may have been at least partly correct, for reasons and in ways that he could never have anticipated.

"I don’t know of any example where an acquired trait has been written into the genome, into the DNA," says Zhou. "Still, it may be time to revisit the Lamarckian school of thought."

The lead author on the Genes & Development study is Qing Lin, Ph.D. Additional coauthors are Qi Chen, M.D., and Lan Lin, M.S. Assistant professor Jumin Zhou, Ph.D., is the senior author. All authors are based at The Wistar Institute. Funding for the research was provided by the National Institutes of Health, the March of Dimes Birth Defects Foundation, the Edward Mallinckrodt, Jr., Foundation, and the Concern Foundation.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>