Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar study demonstrates heritability of non-genomic information

02.11.2004


It’s one of the defining tenets of modern biology: The characteristics of a living organism are coded into the organism’s DNA, and only information in the DNA can be passed to the organism’s offspring.



A new study by scientists at The Wistar Institute, however, suggests that this is not the full story. Instructions that control gene activity and are recorded solely in the molecular packaging of the DNA can also be passed to an organism’s progeny, according to the new data. This heritable information is distinct from the genetic information coded in the DNA and is referred to by scientists as being "epigenetic" in nature. A report on the study appears in the November 1 issue of Genes & Development.

"The implication of our findings is that, parallel to the genetic information in our DNA, we also inherit epigenetic information to ensure that the regulation of our genes is executed correctly," says Jumin Zhou, Ph.D., an assistant professor in the gene expression and regulation program at Wistar and senior author on the new study.


In their experiments with fruit flies, Zhou and his colleagues investigated certain regulatory elements involved in controlling the homeotic gene complex, a large and complex gene region responsible for the proper development of the basic body plan. These vital genes have been highly conserved in evolution, appearing in species as divergent as fruit flies, mice, and humans. Large genes often employ highly sophisticated regulatory mechanisms: a mandatory promoter that activates transcription of the gene, enhancers that send instructions to the promoter, and specialized regulatory DNA elements such as insulators that can block or augment communication between enhancers and the promoter.

Zhou’s team studied a regulatory element called the Promoter Targeting Sequence, or PTS. They showed that the PTS overcomes an insulator to facilitate, but also restrict, the activity of distant enhancers of a single promoter. Intriguingly, however, they also found that while the PTS required the insulator to target its designated promoter, the insulator could then be removed from the system without effect: With the PTS alone, no activity was seen. With the PTS and the insulator, the PTS effectively targeted its promoter. Then, with the insulator removed, PTS continued to target its promoter.

"The insulator was required to initiate a genetic process," Zhou says. "But then, even without the presence of the insulator, and even though no change was made to the gene, the process was self-perpetuating through multiple generations. This evidence points strongly to the fact of epigenetic inheritance."

The notion that epigenetic alterations can be passed from generation to generation complicates the standard model of genetics. Scientists have long held the view that acquired changes in the regulatory molecules associated with DNA are removed in the germ line cells, reset to a baseline state. Based on the current study, as well as other research conducted over the last few years, this does not appear to be entirely true.

These recent observations necessarily recall the theories of 19th Century scientist Jean-Baptiste Lamarck, who postulated that traits acquired by parents during their lives could be passed on to their offspring. Lamarck’s ideas about evolutionary process were overtaken in subsequent years by those of naturalist Charles Darwin and, later, the monk Gregor Mendel. Recent advances in epigenetics, however, have begun to suggest that Lamarck may have been at least partly correct, for reasons and in ways that he could never have anticipated.

"I don’t know of any example where an acquired trait has been written into the genome, into the DNA," says Zhou. "Still, it may be time to revisit the Lamarckian school of thought."

The lead author on the Genes & Development study is Qing Lin, Ph.D. Additional coauthors are Qi Chen, M.D., and Lan Lin, M.S. Assistant professor Jumin Zhou, Ph.D., is the senior author. All authors are based at The Wistar Institute. Funding for the research was provided by the National Institutes of Health, the March of Dimes Birth Defects Foundation, the Edward Mallinckrodt, Jr., Foundation, and the Concern Foundation.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>