Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme linked to mania and schizophrenia impairs higher brain functions

29.10.2004


Overactivity of protein kinase C (PKC), an enzyme that is implicated in bipolar disorder and schizophrenia, markedly impairs higher brain functions in animals, according to a Yale study published Oct. 29 in Science.



The research adds to mounting evidence that excessive activity of PKC may underlie the distractibility, impaired judgment, impulsivity, and disturbed thinking seen in bipolar disorder (also known as manic depressive illness), and in schizophrenia.

The study also shows that exposure to mild stress can activate PKC, which may lead to worsening of symptoms in patients with these disorders. The findings may explain how upsetting events in the environment can lead to deterioration in higher brain function, and why patients with schizophrenia or bipolar disorder may be particularly susceptible to stress-induced dysfunction. PKC inhibitors may be useful in treating these illnesses, according to Amy Arnsten, associate professor, Department of Neurobiology at Yale School of Medicine and senior author of the study.


"These new findings may also help us understand the impulsivity and distractibility observed in children with lead poisoning," Arnsten said. "Very low levels of lead can activate PKC, and this may lead to impaired regulation of behavior."

Recent genetic and biochemical studies indicate that bipolar disorder and schizophrenia are associated with overactivity of PKC, and many medications that treat schizophrenia and bipolar disorder reduce PKC activity. However, the link between PKC overactivity and neuropsychiatric symptoms had not been understood.

This study examined the effects of increasing PKC activity in the prefrontal cortex of animals performing working memory tasks. The prefrontal cortex is a brain region that allows for the regulation of thoughts, behaviors and feelings. The prefrontal cortex becomes dysfunctional in both bipolar disorder and schizophrenia. In animals, either direct or indirect activation of PKC dramatically impaired prefrontal cortical function, while inhibition of PKC protected prefrontal function. No changes in performance were seen on cognitive tasks that did not rely on the prefrontal cortex.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>