Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can’t place a name to the face you just saw?

27.10.2004


Ever catch a glimpse of someone but can’t quite fit a name to go with the face? While it’s something that happens to everyone, for older people especially, difficulty in retrieving names is a common frustration.



Scientists at the University of Arizona in Tucson are trying to determine what goes on inside the brain when it sees a face. How, for instance, does the brain recognize faces and retrieve the names to go with them? Also, how does the brain determine whether the information that it has retrieved is accurate? "In other words, how do we know when we come up with a possible memory that it’s the right one, as opposed to something we dreamt or imagined," said Alfred Kaszniak, one of the authors of the study.

The lead author of the study, "Feeling of Knowing for Faces: An fMRI Study," Jasmeet Pannu, is a graduate student at the University of Arizona in Tucson. Steven Rapcsak, a UA associate professor of neurology and a behavioral neurologist at the Veterans Medical Center in Tucson, and Kaszniak, a professor and head of the psychology department at the UA, are the other authors. Their latest research is being presented at the annual Society for Neuroscience meeting in San Diego.


Kaszniak said the current study evolved from his ongoing research on Alzheimer’s disease. It also may offer other avenues to study memory, first in healthy individuals to see how memory works and changes with age in a normal brain, and then as a way to understand what comes apart in Alzheimer’s disease. "One of the observations we made and have published quite a bit, had to do with persons with Alzheimer’s eventually not appreciating that they have a memory impairment. Many individuals as their illness progresses will say ’No, I don’t have any trouble with memory,’ or will at least not sufficiently appreciate how severe their memory impairment is," Kaszniak said. He and the others became interested in using faces as a tool because it is a common, real-world issue for people, and "the sort of thing people often complain about having some difficulty with," Kaszniak said.

The specific study used functional magnetic resonance imaging (fMRI) to examine a dozen people, ages 22 to 32, with healthy, developed brains, to measure brain activity. The researchers used the Cognition and Neuroimaging Laboratories at the UA. The subjects viewed 300 famous and not-so-famous faces and reported whether they knew, didn’t know, or felt they knew but couldn’t immediately identify each face.

Jasmeet Pannu said the results of the study suggest that "while some areas in the brain overlap in activation when one is in a ’feeling-of-knowing’ (FOK) state, and when one has successfully retrieved a name, there are also differences."

Specifically the medial prefrontal cortex showed activity during the FOK state that was not active when the subjects either knew or did not know a face. One possible explanation is that activity in the medial prefrontal cortex reflects a state in which subjects were evaluating the correctness of retrieved information related to the famous face shown in the task. "This process may be especially important during the feeling-of-knowing, in which the target word is actively being sought while alternative information may come to mind, such as syllables of the person’s name, profession, other movies or events the person has participated in," Pannu said.

The group also found that the anterior cingulate area of the brain became activated both in the FOK state and when subjects successfully retrieved a name, but with some effort. The anterior singulate area is associated with cognitive conflict processes which allow a person to detect errors in automatic behavior responses. "It is very sensitive to mismatches between, say, a template, a stored set of facts about people and faces, versus the individual face that you can’t quite come up with a name for. It detects that kind of discordance. It’s these middle frontal potions, though that are uniquely involved in when an individual thinks they know a name, but cannot immediately retrieve it," Kaszniak said.

Most memory research in the past focused on either successful retrieval or not knowing, and ignored any stored knowledge not available for retrieval, Pannu said. This study is an attempt to understand what the brain is doing during the FOK state, and the results suggest that the brain may be enlisting additional processes to aid in recalling accurate memories. Pannu said that although "there are a few other neuroimaging studies investigating FOK, our exact findings have not been reported before." It is one of the first step in being able to uncover changes in the memory retrieval process that occur when people age. Early diagnosis is one of the central target areas for researchers at the UA and the statewide Alzheimer’s Research Center.

Kaszniak said the next step will be a study among older adults of something called the "tip-of-the-tongue" phenomenon, or the increasing inability to retrieve a name as people age. "We would like to know what it is in peoples’ brains that accounts for that. We think that on the basis of this (current) study we know where to look in the middle frontal area, but we need to find out whether in fact that is the case, or if it is going to show differences between younger and older adults," Kaszniak said.

Alfred W. Kaszniak | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>