Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory study details dolphin brain evolution for the first time

27.10.2004


The intelligence and cognitive capabilities of dolphins and their aquatic cousins have long fascinated the public and the scientific community, but the question of how and why they have such large brains has mostly gone unanswered. In the first-ever comprehensive analysis of its kind, a new Emory University study maps how brain size changed in dolphins and their relatives the past 47 million years, and helps to provide some answers to how the species evolved in relation to humans.



The study, which will appear in the December issue of The Anatomical Record, was done by Emory psychologist Lori Marino, a faculty member in the university’s Neuroscience and Behavioral Biology Program, and her colleagues Daniel McShea from Duke University and Mark Uhen from the Cranbrook Institute of Science. The paper is available online via Wiley InterScience at http://www.interscience.wiley.com/ar.

The study investigates the fossil record of the toothed whales (which includes dolphins, porpoises, belugas and narwhals) from the order Cetacea and suborder Odontoceti. Many modern toothed whale species (odontocetes) have extremely high encephalization levels – possessing brains that are significantly larger than expected for their body sizes and second only to those of modern humans. "A description of the pattern of encephalization in toothed whales has enormous potential to yield new insights into odontocete evolution, whether there are shared features with hominoid brain evolution, and more generally how large brains evolve," Marino says.


To investigate how the large brains of odontocetes changed over time, Marino and her colleagues quantified and averaged estimates of brain and body size for fossil cetacean species using computed tomography, and analyzed these data along with those for modern odontocetes. The only data previously available were a small handful of fossils that provided a very limited record. Marino and her colleagues spent four years gathering the data and tracking down fossils at The Smithsonian Institution and other museums. A total of 66 fossil crania were scanned and measured. This subset was added to brain and body weight data from 144 modern cetacean specimens for a total sample of 210 specimens representing 37 families and 62 species.

Their work produced the first description and statistical tests of the pattern of change in brain size relative to body size in cetaceans over 47 million years. They found that encephalization level increased significantly in two critical phases in the evolution of odontocetes. The first increase occurred with the origin of odontocetes from the ancestral group Archaeoceti nearly 39 million years ago, and was accompanied by both an increase in brain size and a decrease in body size. This change in encephalization occurred with the emergence of the first cetaceans to possess echolocation - the processing of high frequency acoustic information within a perceptual-communicative system used by modern dolphins and other odontocetes, Marino says. The second major change occurred in the origin of the superfamily Delphinoidea (oceanic dolphins, porpoises, belugas and narwhals) by about 15 million years ago. Both increases probably relate to changes in social ecology (the animals’ social lifestyle) as well, Marino says.

In addition to their large brains, odontocetes have demonstrated behavioral faculties previously only ascribed to humans and, to some extent, other great apes. These abilities include mirror self-recognition, the comprehension of artificial, symbol-based communication systems and abstract concepts, and the learning and intergenerational transmission of behaviors that have been described as cultural.

Despite cognitive commonalities, the odontocete evolutionary pathway has proceeded under a very different set of independent circumstances from that of primates, Marino explains. The highly expanded brain size and behavioral abilities of odontocetes are, in a sense, convergently shared with humans, she says. "Dolphin brains are four to five times larger for their body size when compared to another animal of similar size. In humans, the measure is seven times larger -- not a huge difference. Essentially, the brains of primates and cetaceans arrived at the same cognitive space while evolving along quite different paths" Marino says. "What the data say to me is that we, as humans, are not that special. Although we are highly encephalized, it’s not by much or for that long compared with odontocetes."

Marino and her colleagues add that the observation that there is a single remaining human lineage "pruned down from a bushier tree" has led to a popular view that several species of highly encephalized animals cannot co-exist at the same time. "However, our results show that not only do multiple highly encephalized delphinoids coexist in similar and overlapping environments today, but this situation arose as early as 20 million years ago, and has persisted for at least 15 million years."

The study was funded by the National Science Foundation and the SETI Institute.

Marino’s previous research has shown how dolphins have the capacity for mirror self-recognition, a feat of intelligence previously thought to be reserved only for Homo sapiens and their closest primate cousins. Marino also holds adjunct appointments in Emory’s psychology department and Center for Behavioral Neuroscience, and is a research associate at the Smithsonian’s National Museum of Natural History, and in the Living Links Center for the Advanced Study of Ape and Human Evolution at Yerkes National Primate Research Center.

Beverly Cox Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>