Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psychologist finds instance where ’two wrongs do make a right’

26.10.2004


UO study shows the distinction between perception and action streams is oversimplified



A trusted mental map of your surroundings turns out to be slightly misaligned, skewing your orientation. Your ability to control the direction in which you move is similarly compromised, although in a manner opposite the map’s offset. Taken together, the errors cancel one another, and you end up exactly where you want to be. Contrary to the proverb, two wrongs do make a right. This exception is the rule when it comes to how our brain processes what our eyes see and where our body moves, according to a discovery by University of Oregon researchers Paul Dassonville and Jagdeep Kaur Bala that will appear in the November issue of the journal PLoS Biology.

Their study, funded by the National Science Foundation, challenged a dominant theory of how the brain processes vision. The theory holds that information from the eyes separates into two distinct streams: one to simply represent where we see things in the environment, and another to guide the physical movements of our body within that environment. Both processes have been thought to depend largely on accessing distinct maps of the environment within the brain, representing objects from varying locations in our field of vision by systematically varying activity in corresponding regions of the brain. "It’s starting to look like the distinction between perception and action streams is an oversimplification," says Dassonville, an assistant professor of psychology. "There appear to be as many as 40 different visual areas, many of which contain some type of spatial map, each with its own idiosyncratic pattern of errors. Different tasks draw on different subsets of maps."


To untangle these error-prone maps, the researchers employed an illusion known as the induced Roelofs effect. People were briefly shown a bright spot, surrounded by a large rectangular frame, and were asked to say where they thought the spot appeared. If the frame was shifted to the observer’s right or left, the perceived location of the spot was shifted in the opposite direction. However, when observers were asked to physically point toward the spot, they did so with very little error. "Perception is prone to the illusion, while action seems immune," explains Dassonville, echoing the commonly accepted axiom that separate visual systems drive perception and action.

However, the UO study revealed that slight manipulations of the illusion led to a wholly new realization. In fact, the illusion actually distorted observers’ perceptions of where "straight ahead" was with respect to their own bodies, ultimately affecting both perception and action. "The ’wrong’ perception of where the object appeared was offset by the opposing ’wrong’ pointing movement that was based on the body’s distorted sense of its own position. As a result, the ’right’ pointing movements are made in spite of an inaccurate sense of the visual scene," Dassonville explains.

While we still lack a complete picture of how the brain converts visual input into motor output, Dassonville says, these findings enhance our understanding of the most fundamental concepts of how we experience and interact with the world. Dassonville and Elizabeth Walter, a graduate student, are now using the functional magnetic resonance imaging (fMRI) resources of the University of Oregon’s Robert and Beverly Lewis Center for NeuroImaging to identify brain mechanisms related to the effects described in the PLoS Biology article.

Dassonville joined the UO faculty in 1999. In addition to his appointment in the psychology department, he is a member of the university’s Institute of Neuroscience. Bala is continuing her research on the effects of attention on visual perception in the laboratory of UO psychology professor Richard Marrocco.

PloS Biology, first published in 2003, is the flagship journal of the Public Library of Science, a nonprofit organization of physicians and scientists dedicated to widespread, free access to scientific and medical literature.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>