Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psychologist finds instance where ’two wrongs do make a right’

26.10.2004


UO study shows the distinction between perception and action streams is oversimplified



A trusted mental map of your surroundings turns out to be slightly misaligned, skewing your orientation. Your ability to control the direction in which you move is similarly compromised, although in a manner opposite the map’s offset. Taken together, the errors cancel one another, and you end up exactly where you want to be. Contrary to the proverb, two wrongs do make a right. This exception is the rule when it comes to how our brain processes what our eyes see and where our body moves, according to a discovery by University of Oregon researchers Paul Dassonville and Jagdeep Kaur Bala that will appear in the November issue of the journal PLoS Biology.

Their study, funded by the National Science Foundation, challenged a dominant theory of how the brain processes vision. The theory holds that information from the eyes separates into two distinct streams: one to simply represent where we see things in the environment, and another to guide the physical movements of our body within that environment. Both processes have been thought to depend largely on accessing distinct maps of the environment within the brain, representing objects from varying locations in our field of vision by systematically varying activity in corresponding regions of the brain. "It’s starting to look like the distinction between perception and action streams is an oversimplification," says Dassonville, an assistant professor of psychology. "There appear to be as many as 40 different visual areas, many of which contain some type of spatial map, each with its own idiosyncratic pattern of errors. Different tasks draw on different subsets of maps."


To untangle these error-prone maps, the researchers employed an illusion known as the induced Roelofs effect. People were briefly shown a bright spot, surrounded by a large rectangular frame, and were asked to say where they thought the spot appeared. If the frame was shifted to the observer’s right or left, the perceived location of the spot was shifted in the opposite direction. However, when observers were asked to physically point toward the spot, they did so with very little error. "Perception is prone to the illusion, while action seems immune," explains Dassonville, echoing the commonly accepted axiom that separate visual systems drive perception and action.

However, the UO study revealed that slight manipulations of the illusion led to a wholly new realization. In fact, the illusion actually distorted observers’ perceptions of where "straight ahead" was with respect to their own bodies, ultimately affecting both perception and action. "The ’wrong’ perception of where the object appeared was offset by the opposing ’wrong’ pointing movement that was based on the body’s distorted sense of its own position. As a result, the ’right’ pointing movements are made in spite of an inaccurate sense of the visual scene," Dassonville explains.

While we still lack a complete picture of how the brain converts visual input into motor output, Dassonville says, these findings enhance our understanding of the most fundamental concepts of how we experience and interact with the world. Dassonville and Elizabeth Walter, a graduate student, are now using the functional magnetic resonance imaging (fMRI) resources of the University of Oregon’s Robert and Beverly Lewis Center for NeuroImaging to identify brain mechanisms related to the effects described in the PLoS Biology article.

Dassonville joined the UO faculty in 1999. In addition to his appointment in the psychology department, he is a member of the university’s Institute of Neuroscience. Bala is continuing her research on the effects of attention on visual perception in the laboratory of UO psychology professor Richard Marrocco.

PloS Biology, first published in 2003, is the flagship journal of the Public Library of Science, a nonprofit organization of physicians and scientists dedicated to widespread, free access to scientific and medical literature.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>