Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Academics find that the finger of destiny points their way


Male scientist are good at research because they have the hormone levels of women and long index fingers, a new study says.

A survey of academics at the University of Bath has found that male scientists typically have a level of the hormone oestrogen as high as their testosterone level. These hormone levels are more usual in women than men, who normally have higher levels of testosterone.

The study draws on research which suggests that these unusual hormone levels in many male scientists cause the right side of their brains, which governs spatial and analytic skills, to develop strongly.

The study, which as been submitted to the British Journal of Psychology, also found that:

  • these hormonal levels may make male scientists less likely to have children.
  • those men with a higher level of oestrogen were more likely than average to have relatives with dyslexia, which may in part be caused by hormonal levels.
  • women social scientists tended to have higher levels of testosterone, making their brains closer to those of males in general.

The study drew on work in the last few years which established that the levels of oestrogen and testosterone a person has can be seen in the relative length of their index (second) and ring (fourth) fingers. The ratio of the lengths is set before birth and remains the same throughout life.

The length of fingers is genetically linked to the sex hormones, and a person with an index finger shorter than the ring finger will have had more testosterone while in the womb, and a person with an index finger longer than the ring finger will have had more oestrogen. The difference in the lengths can be small – as little as two or three per cent – but important.

A survey of the finger lengths of over 100 male and female academics at the University by senior Psychology lecturer Dr Mark Brosnan has found that those men teaching hard science like mathematics and physics tend to have index fingers as long as their ring fingers, a marker for unusually high oestrogen levels for males. It also found the reverse: those male academics with longer ring fingers than index fingers – the usual male pattern – tended not to be in science but in social science subjects such as psychology and education.

A further study also suggests that prenatal hormone exposure, and hence index finger length, can also influence actual achievement levels. In a survey of male and female students on a JAVA programming course at the University, the researchers found a link between finger length ratio and test score. The smaller the difference between index and ring finger - the higher the test score at the end of the year. “The results are a fascinating insight into how testosterone and oestrogen levels in the womb can affect people’s choice of career and how these levels can show up in the length of fingers on our hands,” said Dr Brosnan.

“In the general population, men typically have higher levels of testosterone than women, but the male scientists at the University of Bath have lower testosterone levels than is usual for men – their oestrogen and testosterone levels tend to match those of women generally. “This research now suggests that lower than average testosterone levels in men lead to spatial skills that can give a man the ability to succeed in science. Other research has in the past also suggested that an unusually high level of testosterone can do the same thing by encouraging the development of the right hemisphere.

"This right brain development is at the expense of language abilities and people skills that men with a more usual level of testosterone develop and which can help them in social science subjects like psychology or education.” Dr Brosnan said that men having levels of testosterone very much higher than normal for males would also create the right hemisphere dominated brain which could help in science. The extremes of low testosterone and high testosterone for men would create the scientific brain, and the normal range in the middle would create the ‘social science’ brain, he said.

“The question also arises as to why more women, who have this lower level of testosterone, are not in science, which is male-dominated, with only one in 40 science professors being a woman. “The short answer is that we don’t know: the high levels of oestrogen in women may act differently on the brain and not give them the spatial skills that men with similar levels of the hormone have.

“Or their may be social reasons: science has been male-dominated the past and this may be putting women off entering it, even though they are able to. “Why male scientists should have fewer children is not known.

“The study of my colleagues at the University of Bath was also interesting in that it shows that women in social science tend to have a higher level of testosterone level relative to their oestrogen level, making their brains closer to those of men in general.”

Andrew McLaughlin | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>