Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Academics find that the finger of destiny points their way

21.10.2004


Male scientist are good at research because they have the hormone levels of women and long index fingers, a new study says.

A survey of academics at the University of Bath has found that male scientists typically have a level of the hormone oestrogen as high as their testosterone level. These hormone levels are more usual in women than men, who normally have higher levels of testosterone.

The study draws on research which suggests that these unusual hormone levels in many male scientists cause the right side of their brains, which governs spatial and analytic skills, to develop strongly.



The study, which as been submitted to the British Journal of Psychology, also found that:

  • these hormonal levels may make male scientists less likely to have children.
  • those men with a higher level of oestrogen were more likely than average to have relatives with dyslexia, which may in part be caused by hormonal levels.
  • women social scientists tended to have higher levels of testosterone, making their brains closer to those of males in general.

The study drew on work in the last few years which established that the levels of oestrogen and testosterone a person has can be seen in the relative length of their index (second) and ring (fourth) fingers. The ratio of the lengths is set before birth and remains the same throughout life.

The length of fingers is genetically linked to the sex hormones, and a person with an index finger shorter than the ring finger will have had more testosterone while in the womb, and a person with an index finger longer than the ring finger will have had more oestrogen. The difference in the lengths can be small – as little as two or three per cent – but important.

A survey of the finger lengths of over 100 male and female academics at the University by senior Psychology lecturer Dr Mark Brosnan has found that those men teaching hard science like mathematics and physics tend to have index fingers as long as their ring fingers, a marker for unusually high oestrogen levels for males. It also found the reverse: those male academics with longer ring fingers than index fingers – the usual male pattern – tended not to be in science but in social science subjects such as psychology and education.

A further study also suggests that prenatal hormone exposure, and hence index finger length, can also influence actual achievement levels. In a survey of male and female students on a JAVA programming course at the University, the researchers found a link between finger length ratio and test score. The smaller the difference between index and ring finger - the higher the test score at the end of the year. “The results are a fascinating insight into how testosterone and oestrogen levels in the womb can affect people’s choice of career and how these levels can show up in the length of fingers on our hands,” said Dr Brosnan.

“In the general population, men typically have higher levels of testosterone than women, but the male scientists at the University of Bath have lower testosterone levels than is usual for men – their oestrogen and testosterone levels tend to match those of women generally. “This research now suggests that lower than average testosterone levels in men lead to spatial skills that can give a man the ability to succeed in science. Other research has in the past also suggested that an unusually high level of testosterone can do the same thing by encouraging the development of the right hemisphere.

"This right brain development is at the expense of language abilities and people skills that men with a more usual level of testosterone develop and which can help them in social science subjects like psychology or education.” Dr Brosnan said that men having levels of testosterone very much higher than normal for males would also create the right hemisphere dominated brain which could help in science. The extremes of low testosterone and high testosterone for men would create the scientific brain, and the normal range in the middle would create the ‘social science’ brain, he said.

“The question also arises as to why more women, who have this lower level of testosterone, are not in science, which is male-dominated, with only one in 40 science professors being a woman. “The short answer is that we don’t know: the high levels of oestrogen in women may act differently on the brain and not give them the spatial skills that men with similar levels of the hormone have.

“Or their may be social reasons: science has been male-dominated the past and this may be putting women off entering it, even though they are able to. “Why male scientists should have fewer children is not known.

“The study of my colleagues at the University of Bath was also interesting in that it shows that women in social science tend to have a higher level of testosterone level relative to their oestrogen level, making their brains closer to those of men in general.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>