Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to greater risk of heart disease in type 2 diabetes

20.10.2004


New studies by an international team of scientists led by Joslin Diabetes Center have found variations in a gene that help explain why people with type 2 diabetes are at much greater risk for coronary artery disease, the leading cause of death for this group.


"We now have potential gene markers to help identify diabetes patients at increased risk for heart disease," said Alessandro Doria, M.D., Ph.D., Investigator in Joslin’s Genetics and Epidemiology research section, Director of Joslin’s Genetics Core and Assistant Professor of Medicine at Harvard Medical School. "This knowledge could potentially lead to drugs or other methods that affect this pathway, reducing risk of heart attack and stroke in these patients."

An estimated 18 million people in the United States have type 2 diabetes. People with diabetes are two to four times more likely to have cardiovascular disease, and are at increased risk for stroke, blindness, kidney disease and nerve damage.

In a two-part study published in the Oct. 1 edition of the British journal Human Molecular Genetics, Dr. Doria and his colleagues at Joslin and other research centers in the Northeast and researchers in Italy focused on a gene governing a protein called CD36. This protein is found in the membrane of several types of cells, including the walls of blood vessels.



Previous studies had shown that, among other functions, CD36 is involved in transporting free fatty acids into cells. It also is a scavenger of oxidized "bad" cholesterol LDL at the arterial wall. All are major players in contributing to atherosclerosis -- the dangerous buildup of plaque that can lead to partial or complete blockage of the artery, leading to heart attack or stroke.

In the first part of this study, the researchers mapped the structure of the CD36 gene, which consists of hundreds of nucleic acids strung together like beads on a spiral necklace. They were looking for variants in this sequence that are associated with increased risk of heart disease.

Studying 585 people who did not have diabetes, the researchers found five different CD36 variations that were associated with increased levels of free fatty acids and triglycerides. When all five variants were factored together, a strong link emerged -- the highest levels of fatty acids and triglycerides occurred in people with a specific variant combination.

Using this new knowledge as a basis for a second study, they studied 518 people in both the United States and Italy. All had type 2 diabetes. In addition, nearly half of these subjects also had heart disease, as shown by heart catheterization indicating more than 50 percent blockage of at least one coronary artery. The others did not have any visible heart disease.

The researchers mapped out each person’s CD36 gene variations, then compared those results with the presence of known heart disease. Again, there was a strong link: People with that specific variant combination in the CD36 gene were 60 percent more likely to have heart disease.

"While this research is a significant starting point for assessing risk of heart disease, a constellation of factors are involved," said Dr. Doria. "But it is clear that in addition to high blood pressure, high cholesterol and environmental factors such as smoking, genes are important determinants of heart disease in people with type 2 diabetes."

An International Research Team

In addition to Dr. Doria, other Joslin researchers included Xiaowei Ma, M.D., and Wojciech Mlynarski, M.D. Other U.S. researchers included Michael T. Johnstone, M.D., and Ernest Gervino, Sc.D., of the Cardiology Division at Beth Israel Deaconess Medical Center, Boston; Richard W. Nesto, M.D., of the Heart and Vascular Center, Lahey Clinic, Burlington, MA; and Nada Abumrad, Ph.D., of the State University of New York, Stony Brook. Researchers from Italy included Vincenzo Trischitta, M.D., of the Scientific Institute ’Casa Sollievo della Sofferenza,’ San Giovanni Rotondo; and Angelo Avogaro, M.D., of the University of Padova. The research was funded by the National Institutes of Health and the American Heart Association.

Marge Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu
http://www.joslin.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>