Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to greater risk of heart disease in type 2 diabetes

20.10.2004


New studies by an international team of scientists led by Joslin Diabetes Center have found variations in a gene that help explain why people with type 2 diabetes are at much greater risk for coronary artery disease, the leading cause of death for this group.


"We now have potential gene markers to help identify diabetes patients at increased risk for heart disease," said Alessandro Doria, M.D., Ph.D., Investigator in Joslin’s Genetics and Epidemiology research section, Director of Joslin’s Genetics Core and Assistant Professor of Medicine at Harvard Medical School. "This knowledge could potentially lead to drugs or other methods that affect this pathway, reducing risk of heart attack and stroke in these patients."

An estimated 18 million people in the United States have type 2 diabetes. People with diabetes are two to four times more likely to have cardiovascular disease, and are at increased risk for stroke, blindness, kidney disease and nerve damage.

In a two-part study published in the Oct. 1 edition of the British journal Human Molecular Genetics, Dr. Doria and his colleagues at Joslin and other research centers in the Northeast and researchers in Italy focused on a gene governing a protein called CD36. This protein is found in the membrane of several types of cells, including the walls of blood vessels.



Previous studies had shown that, among other functions, CD36 is involved in transporting free fatty acids into cells. It also is a scavenger of oxidized "bad" cholesterol LDL at the arterial wall. All are major players in contributing to atherosclerosis -- the dangerous buildup of plaque that can lead to partial or complete blockage of the artery, leading to heart attack or stroke.

In the first part of this study, the researchers mapped the structure of the CD36 gene, which consists of hundreds of nucleic acids strung together like beads on a spiral necklace. They were looking for variants in this sequence that are associated with increased risk of heart disease.

Studying 585 people who did not have diabetes, the researchers found five different CD36 variations that were associated with increased levels of free fatty acids and triglycerides. When all five variants were factored together, a strong link emerged -- the highest levels of fatty acids and triglycerides occurred in people with a specific variant combination.

Using this new knowledge as a basis for a second study, they studied 518 people in both the United States and Italy. All had type 2 diabetes. In addition, nearly half of these subjects also had heart disease, as shown by heart catheterization indicating more than 50 percent blockage of at least one coronary artery. The others did not have any visible heart disease.

The researchers mapped out each person’s CD36 gene variations, then compared those results with the presence of known heart disease. Again, there was a strong link: People with that specific variant combination in the CD36 gene were 60 percent more likely to have heart disease.

"While this research is a significant starting point for assessing risk of heart disease, a constellation of factors are involved," said Dr. Doria. "But it is clear that in addition to high blood pressure, high cholesterol and environmental factors such as smoking, genes are important determinants of heart disease in people with type 2 diabetes."

An International Research Team

In addition to Dr. Doria, other Joslin researchers included Xiaowei Ma, M.D., and Wojciech Mlynarski, M.D. Other U.S. researchers included Michael T. Johnstone, M.D., and Ernest Gervino, Sc.D., of the Cardiology Division at Beth Israel Deaconess Medical Center, Boston; Richard W. Nesto, M.D., of the Heart and Vascular Center, Lahey Clinic, Burlington, MA; and Nada Abumrad, Ph.D., of the State University of New York, Stony Brook. Researchers from Italy included Vincenzo Trischitta, M.D., of the Scientific Institute ’Casa Sollievo della Sofferenza,’ San Giovanni Rotondo; and Angelo Avogaro, M.D., of the University of Padova. The research was funded by the National Institutes of Health and the American Heart Association.

Marge Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu
http://www.joslin.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>