Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain science behind ’A beautiful mind’

14.10.2004


Experiment at NYU find neurological underpinnings of economic game theory



In article in today’s issue of the journal Neuron, two neuroscientists – Paul Glimcher of New York University and Michael Dorris, a former NYU colleague currently at Queens University, Canada – offer evidence for the neurological basis for the theories of John Nash, the Nobel-winning economist who pioneered game theory. The findings in the Neuron article are a major advancement in the increasingly prominent field of neuroeconomics, which attempts to discover the basis within the brain for the sort of economic decision-making predicted by game theory.

To develop their findings, Glimcher and Dorris used rhesus monkeys to participate in a strategic conflict game known as the "the inspection game" (the game was first developed by the RAND corporation to evaluate the likelihood of Soviet compliance with arms control agreements). In the human version of the game, there are two players, an "employer" and an "employee." The employee’s goal is to "shirk" as much as possible (for which he receives his wage plus free time), while the employer – who can use an "inspector" to catch the employee – has the goal of spending as little as possible on inspectors while maximizing the employee’s appearances at work.


John Nash, whose life and work was detailed in the movie and book, "A Beautiful Mind," developed a theory that predicts outcomes in this kind of strategic setting. Dorris and Glimcher sought to test those predictions with experiments on both humans and rhesus monkeys, and to examine in the monkeys whether there was evidence that decision-making became encoded within the posterior parietal cortex of the primate brain.

In their research, a computer played the role of the employer, and the human and monkey participants played the employee. Overall, humans played the game hundreds of times, and the rhesus monkeys played it thousands of times; humans were rewarded with money, and the monkeys were rewarded with fruit juice each time they "won" a round of the game.

Dorris and Glimcher found that with human players, the outcomes predicted by the Nash equilibrium computations were largely correct and surprisingly, that the behavior of the monkeys in this game was essentially identical to that of the humans. This was an important finding, because it permitted the researchers to examine the role of the posterior parietal cortex of the monkeys in a setting in which the monkeys seemed to employ similar, if not identical, strategies as humans in game playing.

Another element of Nash’s theory opened the door for Glimcher’s and Dorris’ neurological findings. In Nash’s theory applied to the inspection game, the "desirability" of the employee’s two options, working or shirking, must be equivalent regardless of the level at which the equilibrium is achieved. That is, from the employee’s perspective, whether the balance of working and shirking requires the employee to work a lot or permits him to shirk a lot (based on how often the employer uses the inspector), the desirability of the two choices should be rendered equal by the actions of his opponent. Glimcher and Dorris reasoned that if the economic theory was sound in terms of producing behavior, then there should be corresponding neurological findings in the posterior parietal cortex.

In fact, when Glimcher and Dorris examined the activities of those neurons while the monkeys played the inspection game, they found that the posterior parietal cortex carried a signal essentially identical to the one expected. When the monkeys’ behavior was well predicted by Nash’s theory, the neural activity corresponded.

Glimcher said, "The field of game theory has till now largely been viewed as purely mathematical and theoretical, with some room for behavioral experimentation. These findings lie at the beginning of a new era in which we will be able to pose and explore economic and decision-making questions with empirical data from brain measurements. These new measurements will give us insights from the biological perspective that will improve both the explanatory and predictive of existing economic approaches. This work really brings into the realm of neurobiological inquiry the kinds of decision-making that we usually call voluntary, and it strengthens the argument that we are beginning to understand where and how the process of making a decision is executed by the human brain."

Paul Glimcher is an associate professor of neuroscience at New York University. He is a leading scholar in the field of neuroeconomics; he recently published a book on neuroeconomics, Decisions, Uncertainty, and the Brain: The Science of Neuroeconomics (MIT Press/Bradford Press). Michael Dorris was a post-doctoral fellow in Professor Glimcher’s lab when the work described in the Neuron article was conducted; he is currently an assistant professor of physiology at Queen’s University in Ontario, Canada.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>