Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coke versus Pepsi: It’s all in the head

14.10.2004


The preference for Coke versus Pepsi is not only a matter for the tongue to decide, Samuel McClure and his colleagues have found. Brain scans of people tasting the soft drinks reveal that knowing which drink they’re tasting affects their preference and activates memory-related brain regions that recall cultural influences. Thus, say the researchers, they have shown neurologically how a culturally based brand image influences a behavioral choice.



These choices are affected by perception, wrote the researchers, because "there are visual images and marketing messages that have insinuated themselves into the nervous systems of humans that consume the drinks." Even though scientists have long believed that such cultural messages affect taste perception, there had been no direct neural probes to test the effect, wrote the researchers. Findings about the effects of such cultural information on the brain have important medical implications, they wrote. "There is literally a growing crisis in obesity, type II diabetes, and all their sequelae that result directly from or are exacerbated by overconsumption of calories. It is now strongly suspected that one major culprit is sugared colas," they wrote.

Besides the health implications of studying soft drink preference, the researchers decided to use Coke and Pepsi because-- even though the two drinks are nearly identical chemically and physically--people routinely strongly favor one over the other. Thus, the two soft drinks made excellent subjects for rigorous experimental studies.


In their study, the researchers first determined the Coke versus Pepsi preference of 67 volunteer subjects, both by asking them and by subjecting them to blind taste tests. They then gave the subjects sips of one drink or the other as they scanned the subjects’ brains using functional magnetic resonance imaging (fMRI). In this widely used imaging technique, harmless magnetic fields and radio signals are used to measure blood flow in regions of the brain, with such flow indicating brain activity levels. In the experiments, the sips were preceded by either "anonymous" cues of flashes of light or pictures of a Coke or Pepsi can.

The experimental design enabled the researchers to discover the specific brain regions activated when the subjects used only taste information versus when they also had brand identification. While the researchers found no influence of brand knowledge for Pepsi, they found a dramatic effect of the Coke label on behavioral preference. The brand knowledge of Coke both influenced their preference and activated brain areas including the "dorsolateral prefrontal cortex" and the hippocampus. Both of these areas are implicated in modifying behavior based on emotion and affect. In particular, wrote the researchers, their findings suggest "that the hippocampus may participate in recalling cultural information that biases preference judgments."

The researchers concluded that their findings indicate that two separate brain systems--one involving taste and one recalling cultural influence--in the prefrontal cortex interact to determine preferences.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>