Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coke versus Pepsi: It’s all in the head

14.10.2004


The preference for Coke versus Pepsi is not only a matter for the tongue to decide, Samuel McClure and his colleagues have found. Brain scans of people tasting the soft drinks reveal that knowing which drink they’re tasting affects their preference and activates memory-related brain regions that recall cultural influences. Thus, say the researchers, they have shown neurologically how a culturally based brand image influences a behavioral choice.



These choices are affected by perception, wrote the researchers, because "there are visual images and marketing messages that have insinuated themselves into the nervous systems of humans that consume the drinks." Even though scientists have long believed that such cultural messages affect taste perception, there had been no direct neural probes to test the effect, wrote the researchers. Findings about the effects of such cultural information on the brain have important medical implications, they wrote. "There is literally a growing crisis in obesity, type II diabetes, and all their sequelae that result directly from or are exacerbated by overconsumption of calories. It is now strongly suspected that one major culprit is sugared colas," they wrote.

Besides the health implications of studying soft drink preference, the researchers decided to use Coke and Pepsi because-- even though the two drinks are nearly identical chemically and physically--people routinely strongly favor one over the other. Thus, the two soft drinks made excellent subjects for rigorous experimental studies.


In their study, the researchers first determined the Coke versus Pepsi preference of 67 volunteer subjects, both by asking them and by subjecting them to blind taste tests. They then gave the subjects sips of one drink or the other as they scanned the subjects’ brains using functional magnetic resonance imaging (fMRI). In this widely used imaging technique, harmless magnetic fields and radio signals are used to measure blood flow in regions of the brain, with such flow indicating brain activity levels. In the experiments, the sips were preceded by either "anonymous" cues of flashes of light or pictures of a Coke or Pepsi can.

The experimental design enabled the researchers to discover the specific brain regions activated when the subjects used only taste information versus when they also had brand identification. While the researchers found no influence of brand knowledge for Pepsi, they found a dramatic effect of the Coke label on behavioral preference. The brand knowledge of Coke both influenced their preference and activated brain areas including the "dorsolateral prefrontal cortex" and the hippocampus. Both of these areas are implicated in modifying behavior based on emotion and affect. In particular, wrote the researchers, their findings suggest "that the hippocampus may participate in recalling cultural information that biases preference judgments."

The researchers concluded that their findings indicate that two separate brain systems--one involving taste and one recalling cultural influence--in the prefrontal cortex interact to determine preferences.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>