Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coke versus Pepsi: It’s all in the head

14.10.2004


The preference for Coke versus Pepsi is not only a matter for the tongue to decide, Samuel McClure and his colleagues have found. Brain scans of people tasting the soft drinks reveal that knowing which drink they’re tasting affects their preference and activates memory-related brain regions that recall cultural influences. Thus, say the researchers, they have shown neurologically how a culturally based brand image influences a behavioral choice.



These choices are affected by perception, wrote the researchers, because "there are visual images and marketing messages that have insinuated themselves into the nervous systems of humans that consume the drinks." Even though scientists have long believed that such cultural messages affect taste perception, there had been no direct neural probes to test the effect, wrote the researchers. Findings about the effects of such cultural information on the brain have important medical implications, they wrote. "There is literally a growing crisis in obesity, type II diabetes, and all their sequelae that result directly from or are exacerbated by overconsumption of calories. It is now strongly suspected that one major culprit is sugared colas," they wrote.

Besides the health implications of studying soft drink preference, the researchers decided to use Coke and Pepsi because-- even though the two drinks are nearly identical chemically and physically--people routinely strongly favor one over the other. Thus, the two soft drinks made excellent subjects for rigorous experimental studies.


In their study, the researchers first determined the Coke versus Pepsi preference of 67 volunteer subjects, both by asking them and by subjecting them to blind taste tests. They then gave the subjects sips of one drink or the other as they scanned the subjects’ brains using functional magnetic resonance imaging (fMRI). In this widely used imaging technique, harmless magnetic fields and radio signals are used to measure blood flow in regions of the brain, with such flow indicating brain activity levels. In the experiments, the sips were preceded by either "anonymous" cues of flashes of light or pictures of a Coke or Pepsi can.

The experimental design enabled the researchers to discover the specific brain regions activated when the subjects used only taste information versus when they also had brand identification. While the researchers found no influence of brand knowledge for Pepsi, they found a dramatic effect of the Coke label on behavioral preference. The brand knowledge of Coke both influenced their preference and activated brain areas including the "dorsolateral prefrontal cortex" and the hippocampus. Both of these areas are implicated in modifying behavior based on emotion and affect. In particular, wrote the researchers, their findings suggest "that the hippocampus may participate in recalling cultural information that biases preference judgments."

The researchers concluded that their findings indicate that two separate brain systems--one involving taste and one recalling cultural influence--in the prefrontal cortex interact to determine preferences.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>