Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study on smallpox in monkeys reveals tactics of a killer

13.10.2004


Results of a new study in monkeys offer scientists a rare glimpse of how, on a molecular level, the smallpox virus attacks its victims. The findings shed light on how the virus caused mass death and suffering, and will help point the way to new diagnostics, vaccines and drugs that would be needed in the event of a smallpox bioterror incident.



The study, led by David Relman, M.D., of Stanford University, is now online in the Proceedings of the National Academy of Sciences (PNAS). The research was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

"In light of today’s concerns about bioterror attacks, we have an urgent need to know as much as possible about the workings of the smallpox virus and other bioterror agents," says Anthony S. Fauci, M.D., director of NIAID. "This new research fills in some of the gaps in our understanding of smallpox. Now we are better positioned to speed the development of protective measures."


Related research, also published online in PNAS this week, set the stage for Dr. Relman’s smallpox study. In this work, researchers at the U.S. Army Medical Research Institute of Infectious Diseases, the Centers for Disease Control and Prevention (CDC) and Stanford University, show that cynomolgus macaque monkeys exposed to smallpox virus can develop a disease similar to human smallpox. Previously, scientists thought it impossible for the smallpox virus to sicken any species other than humans.

Following on that discovery, Dr. Relman and a separate team of researchers did molecular-level analysis of how the smallpox infection altered gene expression patterns in the monkeys’ blood cells. Dr. Relman used DNA microarrays, a tool unavailable in 1977 when naturally occurring smallpox was eradicated after a global vaccination campaign. Microarray analysis research reveals how smallpox alters gene activity in host cells under attack by the virus. It also reveals changes in levels of gene expression and expression of some proteins in the blood of monkeys when they are infected with smallpox virus. In their PNAS paper, Dr. Relman and colleagues suggest possible mechanisms by which the virus subverts host defenses. Uncovering these mechanisms gives scientists targets for developing countermeasures to lessen or block the ability of the smallpox virus to cause disease.

Experts believe that this new knowledge of how smallpox acts on cells could speed up development of smallpox countermeasures. Researchers will now be able to compare the actions of smallpox on cells to other pox viruses and use less lethal pox viruses in the search for smallpox countermeasures.

CDC has the only U.S. laboratory facility in which research using smallpox virus is permitted. However, many more labs in the United States have sufficient safety features for handling less-lethal pox viruses, such as monkeypox. If monkeypox--a pox virus less virulent in humans--proves to have molecular workings similar to smallpox, researchers could test countermeasures on it in a greater number of lab facilities, hastening the pace of research.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>