Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study on smallpox in monkeys reveals tactics of a killer

13.10.2004


Results of a new study in monkeys offer scientists a rare glimpse of how, on a molecular level, the smallpox virus attacks its victims. The findings shed light on how the virus caused mass death and suffering, and will help point the way to new diagnostics, vaccines and drugs that would be needed in the event of a smallpox bioterror incident.



The study, led by David Relman, M.D., of Stanford University, is now online in the Proceedings of the National Academy of Sciences (PNAS). The research was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

"In light of today’s concerns about bioterror attacks, we have an urgent need to know as much as possible about the workings of the smallpox virus and other bioterror agents," says Anthony S. Fauci, M.D., director of NIAID. "This new research fills in some of the gaps in our understanding of smallpox. Now we are better positioned to speed the development of protective measures."


Related research, also published online in PNAS this week, set the stage for Dr. Relman’s smallpox study. In this work, researchers at the U.S. Army Medical Research Institute of Infectious Diseases, the Centers for Disease Control and Prevention (CDC) and Stanford University, show that cynomolgus macaque monkeys exposed to smallpox virus can develop a disease similar to human smallpox. Previously, scientists thought it impossible for the smallpox virus to sicken any species other than humans.

Following on that discovery, Dr. Relman and a separate team of researchers did molecular-level analysis of how the smallpox infection altered gene expression patterns in the monkeys’ blood cells. Dr. Relman used DNA microarrays, a tool unavailable in 1977 when naturally occurring smallpox was eradicated after a global vaccination campaign. Microarray analysis research reveals how smallpox alters gene activity in host cells under attack by the virus. It also reveals changes in levels of gene expression and expression of some proteins in the blood of monkeys when they are infected with smallpox virus. In their PNAS paper, Dr. Relman and colleagues suggest possible mechanisms by which the virus subverts host defenses. Uncovering these mechanisms gives scientists targets for developing countermeasures to lessen or block the ability of the smallpox virus to cause disease.

Experts believe that this new knowledge of how smallpox acts on cells could speed up development of smallpox countermeasures. Researchers will now be able to compare the actions of smallpox on cells to other pox viruses and use less lethal pox viruses in the search for smallpox countermeasures.

CDC has the only U.S. laboratory facility in which research using smallpox virus is permitted. However, many more labs in the United States have sufficient safety features for handling less-lethal pox viruses, such as monkeypox. If monkeypox--a pox virus less virulent in humans--proves to have molecular workings similar to smallpox, researchers could test countermeasures on it in a greater number of lab facilities, hastening the pace of research.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>