Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study on smallpox in monkeys reveals tactics of a killer

13.10.2004


Results of a new study in monkeys offer scientists a rare glimpse of how, on a molecular level, the smallpox virus attacks its victims. The findings shed light on how the virus caused mass death and suffering, and will help point the way to new diagnostics, vaccines and drugs that would be needed in the event of a smallpox bioterror incident.



The study, led by David Relman, M.D., of Stanford University, is now online in the Proceedings of the National Academy of Sciences (PNAS). The research was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

"In light of today’s concerns about bioterror attacks, we have an urgent need to know as much as possible about the workings of the smallpox virus and other bioterror agents," says Anthony S. Fauci, M.D., director of NIAID. "This new research fills in some of the gaps in our understanding of smallpox. Now we are better positioned to speed the development of protective measures."


Related research, also published online in PNAS this week, set the stage for Dr. Relman’s smallpox study. In this work, researchers at the U.S. Army Medical Research Institute of Infectious Diseases, the Centers for Disease Control and Prevention (CDC) and Stanford University, show that cynomolgus macaque monkeys exposed to smallpox virus can develop a disease similar to human smallpox. Previously, scientists thought it impossible for the smallpox virus to sicken any species other than humans.

Following on that discovery, Dr. Relman and a separate team of researchers did molecular-level analysis of how the smallpox infection altered gene expression patterns in the monkeys’ blood cells. Dr. Relman used DNA microarrays, a tool unavailable in 1977 when naturally occurring smallpox was eradicated after a global vaccination campaign. Microarray analysis research reveals how smallpox alters gene activity in host cells under attack by the virus. It also reveals changes in levels of gene expression and expression of some proteins in the blood of monkeys when they are infected with smallpox virus. In their PNAS paper, Dr. Relman and colleagues suggest possible mechanisms by which the virus subverts host defenses. Uncovering these mechanisms gives scientists targets for developing countermeasures to lessen or block the ability of the smallpox virus to cause disease.

Experts believe that this new knowledge of how smallpox acts on cells could speed up development of smallpox countermeasures. Researchers will now be able to compare the actions of smallpox on cells to other pox viruses and use less lethal pox viruses in the search for smallpox countermeasures.

CDC has the only U.S. laboratory facility in which research using smallpox virus is permitted. However, many more labs in the United States have sufficient safety features for handling less-lethal pox viruses, such as monkeypox. If monkeypox--a pox virus less virulent in humans--proves to have molecular workings similar to smallpox, researchers could test countermeasures on it in a greater number of lab facilities, hastening the pace of research.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>