Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth study suggests caution against using certain drugs to unclog heart arteries

12.10.2004


Dartmouth Medical School cardiology researchers have discovered a new mechanism for what drives the growth of muscle tissue in the lining of injured heart vessels that can eventually lead to blockage. Their study, reported in the October 19 issue of the journal Circulation, raises important questions about the use of drugs that promote or prevent angiogenesis - the formation of blood vessels - to treat the condition.



Normal heart arteries have a muscle tissue layer inside their walls. In coronary artery disease or in response to mechanical injury such as angioplasty (a non-surgical procedure to open clogged arteries), new smooth muscle cells grow along the innermost layer of the arterial lining and leads to narrowing. Such muscle buildup also occurs with use of a stent – a small wire mesh tube inserted after angioplasty to keep the artery clear.

It is the most common cause of stent failure, according to Michael Simons, professor of medicine and of pharmacology and toxicology at Dartmouth Medical School and chief of cardiology at Dartmouth-Hitchcock Medical Center, who headed the research team. Based on the research, Simons cautions against using angiogenic drugs to unblock arteries in certain heart conditions. He indicated that stents coated with agents that specifically target smooth muscle to prevent or kill growth should remain the treatment of choice at present. "They are not perfect, so everyone is looking for what can be added to make things better," he noted.


The biological drivers of the smooth muscle accumulation are unclear. Injury may somehow alter the tissue on the inner arterial layer, called the intima, so it is susceptible to factors in the blood that induce smooth muscle cells to proliferate. At the same time, there is an intense inflammatory response on the outermost layer of the arterial wall that also appears to be involved in stimulating blood vessels to feed smooth muscle accumulation.

Recent studies of the angiogenesis process have provided new insights into understanding cardiovascular disorders. Regulating angiogenesis with agents that promote or prevent blood vessel growth is considered a promising approach for treating a number of diseases. The researchers found that injured arteries grow smooth muscle in two distinct ways: one that depends on angiogenesis and another that is independent. "So even if no there is no angiogenesis, mechanical injury alone will still stimulate smooth muscle growth," Simons said.

This duality could make both angiogenesis-promoting and angiogenesis-suppressing drugs ineffective in preventing renarrowing of arteries following angioplasty or stenting. "In fact, pro-angiogenic drugs could make things worse, not better," Simons said. "If you’re going to use an angiogenic agent, it will do harm, because it will actually promote stenosis [narrowing] instead of inhibiting it."

The studies were done in rabbits, chosen for their thick human-like arteries. Using an agent to stimulate angiogenesis on the outer surface after local injury, the researchers found a large increase in smooth muscle in the inside lining of the artery, meaning that angiogenesis induced intimal growth that narrowed the blood vessel. Then, using different agents to inhibit angiogenesis, they showed that even when angiogenesis was completely stopped, some new muscle accumulated.

"Intimal growth is a fundamental pathology responsible for many cardiovascular diseases including atherosclerosis and hypertension," Simons said. "This is the first time such a combination of angiogenesis-dependent and independent phases of smooth muscle growth has been proposed."

Study co-authors are Dr. Rohit Khurana, who was a visiting Fulbright scholar from University College London, Dr. Zhenwu Zhuang, Dr. Masahiro Murakami, and Dr. Ebo De Muinck, all from Dartmouth Medical School, as well as colleagues from London, Finland and Genentech of San Francisco.

Andrew Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>