Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endoscopic approach best for repairing bone defect between brain, nasal cavity

07.10.2004


The best approach for repairing breaks in the thin bone that separates the brain from the nasal cavity is through the nasal cavity, according to an analysis of 92 patients who had this increasingly common approach to treating a fortunately rare problem.



The intranasal endoscopic approach is the best way to treat a potentially very bad problem," says Dr. Stilianos E. Kountakis, vice chair of the Medical College of Georgia Department of Otolaryngology-Head and Neck Surgery and principal author of the study published in the October issue of The Laryngoscope. The alternative is opening the skull, moving the front portion of the brain out of the way – destroying smell nerves in the process – and approaching the defect from the top, an approach that may be necessary if the defect is too big to treat endoscopically, Dr. Kountakis says.

However, Dr. Kountakis suggests trying the endoscopic approach – which uses small cameras and monitors so surgeons can operate with minimal trauma – several times before resorting to the open procedure. The condition, called cerebrospinal fluid rhinorrhea, results when trauma or high pressures inside the skull cause a break that allows a direct communication between the nose and brain, potentially causing meningitis and even death.


When the cerebrospinal fluid escapes through the nose, loss of protective fluid around the brain can cause headaches as well as the uncontrollable dripping. "That is something that is classic," says Dr. Kountakis, who directs the MCG Georgia Sinus and Allergy Center. "People say when they go to church and bow their heads to pray, fluid runs out," he says, noting that any activity that tilts the head downward or increases internal pressure, from exercise to straining to use the bathroom, can cause dripping. "You cannot stop it," he says. "Mucous from the nose, you always are able to sniff back. But because this fluid has such a low viscosity, when it runs, it runs uncontrollably."

As bad as that may sound, Dr. Kountakis says the biggest concern is brain infection, seizures and even death that can result when nasal contents work their way into the brain. "It’s not a major cause of meningitis, but 10 to 50 percent of the people who have a cerebrospinal fluid leak will get meningitis." A small portion of the brain also can move into the nasal cavity through breaks in the thin bone at the base of skull and between the eyeballs, he says.

The study looked at the results of 92 patients age 6-81 who had endoscopic repair of the condition over a 12-year period at the University of Virginia in Charlottesville where Dr. Kountakis was on faculty before he came to MCG in July 2003. 92 percent of patients had long-term success; the endoscopic approach was successful the first time in 85 percent of patients. Five patients who had large defects eventually needed the open-skull procedure.

Causes of cerebrospinal fluid rhinorrhea include head trauma, sinus surgery, neurosurgery, brain infections, increased intracranial pressure caused by obesity, and cosmetic surgery of the nose. Prior endoscopic sinus surgery was the cause of the leak in 25 percent of patients. "It’s a known risk of the operation," Dr. Kountakis says, "But if it happens during surgery, it should be repaired then."

To visualize the defect, doctors use a contrast medium and computerized tomography and may need instruments to probe the area to identify the location of the tiniest leaks. They can use nasal mucosa, cartilage and abdominal fat to repair holes. Patients are hospitalized for several days and shouldn’t exert themselves following surgery.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>