Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low dose radiation evades cancer cells’ protective ’radar’

06.10.2004


Kills more cells than high-dose radiation

A new study shows that lower doses of radiation elude a damage detection "radar" in DNA and actually kill more cancer cells than high-dose radiation. With these findings, scientists believe they can design therapy to dismantle this "radar" sensor allowing more radiation to evade detection and destroy even greater numbers of cancer cells.
Researchers at the Johns Hopkins Kimmel Cancer Center tested the low-dose radiation strategy on cultured prostate and colon cancer cell lines and found that it killed up to twice as many cells as high-dose radiation. The extra lethality of the low-dose regimen was found to result from suppression of a protein, called ATM* which works like a radar to detect DNA damage and begin repair.


Theodore DeWeese, M.D., who led the study, speculates that cells hit with small amounts of radiation fail to switch on the ATM radar, which prevents an error-prone repair process. DeWeese, who will present his evidence at the annual meeting of the American Society for Therapeutic Radiology and Oncology on October 5 in Atlanta, explains.

"DNA repair is not foolproof - it can lead to mistakes or mutations that are passed down to other generations of cells," explains DeWeese, chairman of the Department of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins. "A dead cell is better than a mutant cell, so if the damage is mild, cells die instead of risking repair."

Higher doses of radiation cause extreme DNA damage and widespread cell death, so the ATM damage sensor is activated to preserve as many cells as possible, protecting, ironically, the cancer cells under target for destruction by the radiation.

While the low-dose regimen works in cultured cells, it has not proved successful in humans. This has lead to effort by Hopkins scientists to study ways to use viruses that can deliver ATM-blocking drugs to the cells. Tests in animals are expected to begin soon.

In the current study, colon and prostate cancer cells lines were treated with either high levels of radiation or small amounts spread over many days. Low-level radiation is approximately 10 times more powerful than normal exposure, while high doses are 1,000 times stronger. Approximately 35 percent of colon cancer cells survived low-dose radiation as compared to 60 percent receiving high-dose. In prostate cancer cell lines, half of the cells survived low-dose radiation, while 65 percent remained in higher doses.

In the low-dose group, ATM activation was reduced by 40 to 50 percent. The researchers proved ATM inactivation was the culprit since low-dose irradiated cells fared better after ATM was reactivated with chloroqine, best known as a treatment for malaria.

"Tricking cancer cells into ignoring the damage signals that appear on its radar could succeed in making radiation more effective in wiping out the disease," says DeWeese.

This research was funded by the National Cancer Institute.

Research participants from Johns Hopkins include Spencer Collis, Julie Schwaninger, Alfred Ntambi, Thomas Keller, Larry Dillehay, and William Nelson.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.radonc.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>