Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low dose radiation evades cancer cells’ protective ’radar’

06.10.2004


Kills more cells than high-dose radiation

A new study shows that lower doses of radiation elude a damage detection "radar" in DNA and actually kill more cancer cells than high-dose radiation. With these findings, scientists believe they can design therapy to dismantle this "radar" sensor allowing more radiation to evade detection and destroy even greater numbers of cancer cells.
Researchers at the Johns Hopkins Kimmel Cancer Center tested the low-dose radiation strategy on cultured prostate and colon cancer cell lines and found that it killed up to twice as many cells as high-dose radiation. The extra lethality of the low-dose regimen was found to result from suppression of a protein, called ATM* which works like a radar to detect DNA damage and begin repair.


Theodore DeWeese, M.D., who led the study, speculates that cells hit with small amounts of radiation fail to switch on the ATM radar, which prevents an error-prone repair process. DeWeese, who will present his evidence at the annual meeting of the American Society for Therapeutic Radiology and Oncology on October 5 in Atlanta, explains.

"DNA repair is not foolproof - it can lead to mistakes or mutations that are passed down to other generations of cells," explains DeWeese, chairman of the Department of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins. "A dead cell is better than a mutant cell, so if the damage is mild, cells die instead of risking repair."

Higher doses of radiation cause extreme DNA damage and widespread cell death, so the ATM damage sensor is activated to preserve as many cells as possible, protecting, ironically, the cancer cells under target for destruction by the radiation.

While the low-dose regimen works in cultured cells, it has not proved successful in humans. This has lead to effort by Hopkins scientists to study ways to use viruses that can deliver ATM-blocking drugs to the cells. Tests in animals are expected to begin soon.

In the current study, colon and prostate cancer cells lines were treated with either high levels of radiation or small amounts spread over many days. Low-level radiation is approximately 10 times more powerful than normal exposure, while high doses are 1,000 times stronger. Approximately 35 percent of colon cancer cells survived low-dose radiation as compared to 60 percent receiving high-dose. In prostate cancer cell lines, half of the cells survived low-dose radiation, while 65 percent remained in higher doses.

In the low-dose group, ATM activation was reduced by 40 to 50 percent. The researchers proved ATM inactivation was the culprit since low-dose irradiated cells fared better after ATM was reactivated with chloroqine, best known as a treatment for malaria.

"Tricking cancer cells into ignoring the damage signals that appear on its radar could succeed in making radiation more effective in wiping out the disease," says DeWeese.

This research was funded by the National Cancer Institute.

Research participants from Johns Hopkins include Spencer Collis, Julie Schwaninger, Alfred Ntambi, Thomas Keller, Larry Dillehay, and William Nelson.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.radonc.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>