Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensity modulated radiation therapy reduces radiation dose to healthy breast tissue

06.10.2004


Results from a University of Pittsburgh study evaluating intensity modulated radiation therapy (IMRT) for breast cancer indicate that IMRT results in a lower dose of radiation to healthy breast tissue when compared to standard radiation. The findings were presented today at the 46th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Atlanta.



"More than 70 percent of breast cancer patients receive ionizing radiation therapy to treat their disease," said Dwight E. Heron, M.D., study co-author and assistant professor of radiation oncology, University of Pittsburgh School of Medicine and vice chairman of radiation oncology, University of Pittsburgh Medical Center. "While these high-energy beams are targeted to the tumor site as precisely as possible, they often inadvertently injure healthy breast tissue that surrounds the tumor site, limiting the doses of radiation that can be used to effectively destroy cancer cells. With this study, we sought to discover whether tightly focused radiation beams, such as those provided by IMRT, would make a difference in the amount of radiation received by the side of the breast opposite from the tumor site."

In the study, 65 patients with breast cancer who had received breast-conserving surgery were treated with IMRT using the Eclipseâ Planning System, Varian Medical Systems, and compared with 18 patients treated with conventional 2D or 3D radiation therapy. Results indicated a 35 percent reduction in radiation dose to the breast opposite the tumor site at the 4 cm position from the patient’s midline and a 57 percent reduction at the 8 cm position in favor of those patients treated with IMRT.


"These results are encouraging evidence that breast cancer patients can benefit from IMRT," said Dr. Heron. "With more homogenous and conformal treatment, breast cancer patients may be spared side effects from standard radiotherapy that can include skin irritation and breakdown and scarring of the lungs. The risk of treatment-related heart complications, though rare, also may be further reduced with IMRT."

During radiation therapy, high-energy beams are aimed at cancer cells to destroy them by permanently damaging their underlying genetic material. Unlike standard radiation therapy, IMRT administers a radiation field that consists of several hundred small beams of varying intensities that pass through normal tissue without doing significant damage, but converge to give a precise dose of radiation at the tumor site. IMRT can potentially limit the adverse side effects from radiation while increasing the intensity of doses that can be given to effectively destroy cancer cells.

IMRT is combined with a process called inverse treatment planning to determine the best way to treat a patient. It relies on CT (computed tomography) data from patients that is processed and analyzed by a complex computer system to produce the ideal radiation dose distribution for that patient.

Co-authors of the study include Deborah Sonnick, C.M.D.; Ajay Bhatnagar, M.D.; Edward Brandner, Ph.D.; Kristina Gerszten, M.D.; and Melvin Deutsch, M.D.; all with the department of radiation oncology at the University of Pittsburgh School of Medicine.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>