Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensity modulated radiation therapy reduces radiation dose to healthy breast tissue

06.10.2004


Results from a University of Pittsburgh study evaluating intensity modulated radiation therapy (IMRT) for breast cancer indicate that IMRT results in a lower dose of radiation to healthy breast tissue when compared to standard radiation. The findings were presented today at the 46th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Atlanta.



"More than 70 percent of breast cancer patients receive ionizing radiation therapy to treat their disease," said Dwight E. Heron, M.D., study co-author and assistant professor of radiation oncology, University of Pittsburgh School of Medicine and vice chairman of radiation oncology, University of Pittsburgh Medical Center. "While these high-energy beams are targeted to the tumor site as precisely as possible, they often inadvertently injure healthy breast tissue that surrounds the tumor site, limiting the doses of radiation that can be used to effectively destroy cancer cells. With this study, we sought to discover whether tightly focused radiation beams, such as those provided by IMRT, would make a difference in the amount of radiation received by the side of the breast opposite from the tumor site."

In the study, 65 patients with breast cancer who had received breast-conserving surgery were treated with IMRT using the Eclipseâ Planning System, Varian Medical Systems, and compared with 18 patients treated with conventional 2D or 3D radiation therapy. Results indicated a 35 percent reduction in radiation dose to the breast opposite the tumor site at the 4 cm position from the patient’s midline and a 57 percent reduction at the 8 cm position in favor of those patients treated with IMRT.


"These results are encouraging evidence that breast cancer patients can benefit from IMRT," said Dr. Heron. "With more homogenous and conformal treatment, breast cancer patients may be spared side effects from standard radiotherapy that can include skin irritation and breakdown and scarring of the lungs. The risk of treatment-related heart complications, though rare, also may be further reduced with IMRT."

During radiation therapy, high-energy beams are aimed at cancer cells to destroy them by permanently damaging their underlying genetic material. Unlike standard radiation therapy, IMRT administers a radiation field that consists of several hundred small beams of varying intensities that pass through normal tissue without doing significant damage, but converge to give a precise dose of radiation at the tumor site. IMRT can potentially limit the adverse side effects from radiation while increasing the intensity of doses that can be given to effectively destroy cancer cells.

IMRT is combined with a process called inverse treatment planning to determine the best way to treat a patient. It relies on CT (computed tomography) data from patients that is processed and analyzed by a complex computer system to produce the ideal radiation dose distribution for that patient.

Co-authors of the study include Deborah Sonnick, C.M.D.; Ajay Bhatnagar, M.D.; Edward Brandner, Ph.D.; Kristina Gerszten, M.D.; and Melvin Deutsch, M.D.; all with the department of radiation oncology at the University of Pittsburgh School of Medicine.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>