Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical analysis: It may not be possible to create ’perfect lens’

29.09.2004


Researchers at Purdue University and the Massachusetts Institute of Technology have completed a mathematical analysis showing that it isn’t quite possible to build a so-called "perfect lens," but the underlying theory still makes it feasible to design better imaging systems.



A perfect lens would be able to focus light more narrowly than conventional lenses, making it possible to etch finer electronic circuits and create more compact and powerful computer chips. Such lenses also might lead to better fiberoptic communications systems and more precise medical imaging technologies.

Researchers have now shown, through rigorous mathematical analysis, that a perfect lens is not possible, said Kevin J. Webb, a professor of electrical and computer engineering at Purdue. "It may be possible to build a better imaging system, but it could never be perfect," Webb said. "That’s the bottom line."


The findings are detailed in a paper appearing online this week in Physical Review E, a journal published by the American Physical Society. The paper was written by Webb, Purdue engineering doctoral student Ming-Chuan Yang, MIT doctoral student David Ward and Keith Nelson, a professor of physical chemistry at MIT.

Perfect lenses theoretically could compensate for the loss of a portion of the light transmitting an image as it passes through a lens. Lenses and imaging systems could be improved if this lost light, which scientists call "evanescent light," could be restored.

Central to the concept of a perfect lens is the phenomenon called refraction, which occurs when electromagnetic waves, including light, bend slightly when passing from one material into another. Refraction causes the bent-stick-in-water effect, which occurs when a stick placed in a glass of water appears bent when viewed from the outside. Each material has its own "refraction index," which describes how much light will bend in that particular material.

All natural materials, such as glass, air and water, have positive refractive indices. In the late 1960s, researchers hypothesized what would happen if a material had a negative refractive index. At the interface between a material with a positive index and a material with a negative index, light would bend in the opposite direction. In 2000, researcher John Pendry at the Imperial College, London, theorized that slabs of such material might be used to create a perfect lens. The idea was that an imaging system that used a combination of positive and negative refraction could restore the lost evanescent light.

No materials have yet been created that have negative refraction indices for visible light, but in 2001 researchers at the University of California, San Diego, used combinations of copper rings and wires to cause a microwave beam to undergo negative refraction, enlivening the debate about the possibility of perfect lenses. "Through a rigorous mathematical analysis, however, we have been able to show that, while a negative refraction index could conceivably be used to build better imaging systems, a perfect lens is not possible," Webb said.

The research was supported in part by the U.S. Army Research Office and the National Science Foundation. "It’s always useful to use effects found either in nature or in fabricated structures to improve optical systems," said Fil Bartoli, a program director in the Electrical and Communications Systems Division within the NSF’s Engineering Directorate. "But any time you employ some cute effect, such as negative refraction, it’s important to quantify it and to determine to what extent it could be useful. "That is what Dr. Webb and his colleagues tried to do, and I think that they succeeded in quantifying it and making a useful statement."

The concept of using materials with negative refractive indices to improve imaging systems is likely to receive continued attention in the years to come, he said. "It’s a topical area that has a fair amount of interest in the scientific and engineering communities and still needs to be investigated," Bartoli said.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>