Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice finds ’on-off switch’ for buckyball toxicity

27.09.2004


CBEN pioneers method of mitigating nanoparticle toxicity via surface enhancement



Researchers at Rice University’s Center for Biological and Environmental Nanotechnology (CBEN) have demonstrated a simple way to reduce the toxicity of water-soluble buckyballs by a factor of more than ten million. The research will appear in an upcoming issue of the journal Nano Letters, published by the American Chemical Society, the world’s largest scientific society. One of the first toxicological studies of buckyballs, the research was published online by the journal on Sept. 11.

Buckyballs, whose chemical notation is C60, are hollow, soccerball-shaped molecules containing 60 carbon atoms. Their diameter is just one-billionth of a meter, or one nanometer, and their discovery at Rice in 1985 is widely regarded as an early milestone in the field of nanotechnology.


While buckyballs show great promise in applications as diverse as fuel cells, batteries, pharmaceuticals and coatings, some scientists and activists have raised concerns about their potential toxicity to humans and animals.

CBEN’s study is the first cytotoxicity study of human cells exposed to buckyballs. Cytotoxicity refers to toxic effects on individual cells. The study found that even minor alterations to the surface of the buckyballs can dramatically affect how toxic they are to individual cells, and the researchers identified specific alterations that render them much less toxic.

"There are many cases where toxicity is desirable," said Vicki Colvin, CBEN director, professor of chemistry and chemical engineering, and the principal investigator for the research. "For example, we might want particles that kill cancer cells or harmful bacteria. In other cases -- like applications where particles may make their way into the environment -- toxicity is undesirable."

In the study, the researchers exposed two types of human cells to various solutions containing different concentrations of buckyballs. Four types of solutions were tested. One contained tiny clusters of smooth-surfaced buckyballs. In the other three, researcher s modified the buckyballs by attaching other molecules to their sides. Researchers measured how many cells died within 48 hours of exposure to each solution, and they repeated the tests until they found the exposure level for each that resulted in a 50 percent mortality rate.

In general, the greater the degree of surface modification, the lower the toxicity. For example, the undecorated buckyballs showed the highest toxicity -- about 20 parts per billion-- while the least toxic proved to be buckyballs decorated with the largest number of hydroxyl side-groups. To achieve the equivalent level of toxicity as that of bare buckyballs, the researchers had to increase the concentration of these modified buckyballs by 10 million times to more than 5 million parts per billion.

"We’re encouraged to see that controlling the surface properties of buckyballs allows us to dial the level of toxicity up or down, because making those kinds of modifications is something that chemists do every day in university research labs and in industry," Colvin said. "Moreover, we believe the technique can prove useful in tuning the toxicity of other nanoparticles."

The researchers postulate that cell death in the tests occurred via physical disruption of the cell membrane by oxygen radical species generated by the buckyballs. Colvin and her colleagues emphasize that the study only fills in part of the puzzle regarding fullerene toxicity. For example, because cytotoxic studies look only at cells in culture, they don’t tell scientists what happens inside the body, where cellular repair mechanisms, whole-organ and whole-body processes come into play.

"Cytotoxicity should not be confused with a full-fledged toxicological risk assessment," said Kevin Ausman, CBEN executive director and a co-author of the paper. "Risk assessments take into account exposure rates, uptake mechanisms, transport within the body and much more. Most often, cytotoxicity studies are used as indicators of whether more extensive toxicological study is needed. Based on our results we think buckyballs should be studied in more detail, and we’re already working to arrange additional studies."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>