Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study endorses wood as ’green’ building material

22.09.2004


A new report concludes that wood is one of the most environmentally-sensitive building materials for home construction – it uses less overall energy than other products, causes fewer air and water impacts and does a better job of the carbon "sequestration" that can help address global warming.



The research showed that wood framing used 17 percent less energy than steel construction for a typical house built in Minnesota, and 16 percent less energy than a house using concrete construction in Atlanta. And in these two examples, the use of wood had 26-31 percent less global warming potential.

This $1 million study was prepared by the Consortium for Research on Renewable Industrial Materials, a non-profit corporation of 15 research universities. It was published in the Journal of Forest Products and is the first major update on this topic since a 1976 report by the National Academy of Science.


The type of information and data provided in this report may be increasingly useful as consumers and government agencies try to identify construction techniques and materials for homes and other structures that minimize environmental impacts, said James Wilson, a professor of wood science and engineering at Oregon State University, and vice president of this research consortium.

"There’s a significant consumer movement and even some voluntary standards that are interested in green, or environmentally conscious construction methods," Wilson said. "We need to have a good understanding of the overall effects that different types of construction have in such areas as energy consumption, global warming, air and water impacts, or solid waste disposal."

California and some other states are already moving towards "environmentally preferable purchase" standards that identify the best materials to use for energy conservation, environmental protection and other issues, Wilson said. And it’s quite possible that some states or localities may legally require such approaches in the future for construction of public buildings, he said.

After some experimentation with new building approaches such as concrete or steel in recent decades, Wilson said, it appears that for environmental purposes we may return to one of the most ancient, tried-and-true materials of them all – wood. "We’ve seen a general substitution for wood in many aspects of home construction for years, using less of it for siding, windows, roofing, other purposes," Wilson said.

"Price and availability of wood were some of the factors involved, along with building codes," he said. "And about five years ago the steel industry began a big push for more use of steel in home construction, which didn’t accomplish as much as that industry hoped for, but did have some impact."

The new study that was done looks at the total "life-cycle assessment" of different construction products and techniques, considering such issues as how materials are grown, mined, processed, produced, used and ultimately disposed of, to give a better picture of their overall impact on the environment. It considers effects on energy use, air and water emissions, global warming and other topics.

Although many people are not aware of their overall makeup, houses require a broad range of natural resources, such as limestone, clay, iron ore, sand, gypsum, wood fiber, resins, coal and more. The process of building them uses energy in the form of electricity, diesel fuel, gasoline, wood, coal, or nuclear power. The cumulative impact of using all these natural resources and energy can be significant in ways that are not always apparent – everything from the electricity used in running a steel mill to the mining of raw materials or the diesel fuel that powers a truck hauling logs.

Compiled in a database, this type of information can help consumers, builders, architects, policy makers or government regulators make more informed choices, Wilson said. This particular project examined the implications of a wood frame housing design versus a steel frame design for the cold Minneapolis region, and a wood frame versus concrete design for the hot, humid Atlanta area.

In the Minneapolis example, steel framing, compared to wood, used 17 percent more energy; caused 26 percent more global warming potential; caused a 14 percent higher level of air emissions of concern; more than 300 percent, or triple the level of water emissions of concern; and had about the same solid waste disposal impact.

In the Atlanta example, concrete construction, compared to wood, used 16 percent more energy; caused 31 percent more global warming potential; caused a 23 percent higher level of air emissions of concern; had the same impact on water emissions of concern; and created 51 percent more solid waste.

Wood had a particular value in addressing the global warming issue, the data indicate. The growth of wood in renewable forests works to "sequester" and remove carbon from the atmosphere, and fewer carbon emissions are created in the processing needed to produce wood products than their steel and concrete counterparts. The report also suggested ways to redesign houses to lower fossil fuel use, reduce the use of excessive amounts of materials, recycle demolition wastes and other improvements.

In continued research, Wilson said, scientists hope to expand their studies of wood and other types of construction materials as they relate to even more environmental issues. It will consider more housing examples, different regions of forest resources and manufacturing, use of resins and other structural products that play a role in house construction.

James Wilson | EurekAlert!
Further information:
http://www.orst.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>