Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watery load for Ariane 5 ECA

20.09.2004


When the Ariane 5 ECA qualification flight lifts off in October, one of the ‘passengers’ will be 33.5 litres of water. Onboard will be the experimental Sloshsat-FLEVO satellite, designed to help European scientists find out more about the movement of water in microgravity and its effects on satellites.

Sloshsat-FLEVO is aptly named: slosh for the movement of water, sat for satellite and FLEVO, the project’s acronym: Facility for Liquid Experimentation and Verification in Orbit. Flevo is also the name of the latest province in the Netherlands to be reclaimed from the sea, and one of the sites of the Dutch National Aerospace Laboratory (NLR), the main contractor for this project. The cube-shaped Sloshsat-FLEVO is a mini satellite with a mass of just 129 kg. It will be launched on top of the cylinder-shaped Maqsat-B2 structure and placed in the lower passenger position under the Ariane 5 fairing.

This joint project between ESA’s Technology Research and Development Programme and the Netherlands Agency for Aerospace, is funded mainly through ESA’s General Study and Technology Programme. Sloshsat is designed to investigate fluid dynamics in microgravity conditions by monitoring the behaviour of 33.5 litres of deionised water, placed in a tank onboard the small satellite.



The composite tank has 270 sensors to measure the water’s distribution. Other sensors will measure the temperature, pressure and fluid velocity at 17 locations, and six accelerometers and three fibre-optic gyroscopes will monitor the spacecraft’s motion. Thrusters, powered by a cold gas nitrogen system, will provide linear and rotational movement to increase and control fluid motion.

This is the first time that a satellite has been dedicated to studying fluid behaviour in weightlessness. Spacecraft transporting supplies to the International Space Station, carrying out repairs to disabled communication and observation satellites or heading for other planets, often carry large quantities of fluids onboard in the form of propellant or water. This is why it is important to fully understand the effect a liquid’s movement can have on the attitude control of these spacecraft.
Many fluid dynamic models exist, as well as computational fluid dynamics (CFD) software, but to date the effect of sloshing on spacecraft control has been difficult to predict for real situations as it has not been validated.

Jan Vreeburg of NLR, the Principal Investigator for Sloshsat says “once the satellite is in orbit, scientists will be able to verify and validate existing models”. This will allow them to design new CFD numerical algorithms and liquid management systems for spacecraft.
As well as testing the effect of liquid movement on the attitude control of a spacecraft, Sloshsat-FLEVO will also test the effect of spacecraft manoeuvres on liquids. “For example,” reports Vreeburg, “tests will show us how best to manoeuvre a spacecraft to move the liquid in a tank near to the exit hole; this has to be done carefully to avoid ‘ingesting’ bubbles. Once thrust is generated by the engine, its action generally keeps the propellant at the exit hole.”

Almost ready for launch

Sloshsat-FLEVO has been installed inside the Sylda 5 multiple payload deployment system at Europe’s Spaceport in French Guiana since the end of August. On top of the Sylda is another passenger bound for space, an XTAR-EUR telecommunications satellite.

ESA’s spring-loaded ESAJECT mechanism, developed and built by the Belgian company Verhaert for 50 – 150 kg satellites, will eject Sloshsat-FLEVO once the launcher reaches geostationary transfer orbit. The satellite will then transmit data on the behaviour of the water in its tank under different motions controlled from the ground, for a minimum of 14 days. The total experiment time will be about 24 hours and last until the gas supply of the reaction control system is exhausted. Between experiment runs the water is allowed to settle and the battery will be recharged using solar panels.

Staff at the ESA Diane ground station in Kourou, French Guiana will control the satellite with the support of ESA’s European Space Operations Centre in Darmstadt, Germany. During operations, the Principal Investigators will be able to follow Sloshsat in near real time via the internet, from a server located at ESTEC, ESA’s European Space Research and Technology Centre in the Netherlands. Telemetry data will enable a virtual reality image to be created of both Sloshsat and the liquid in the tank.

Alain Conde Reiss | alfa
Further information:
http://www.esa.int/SPECIALS/Launchers_Home/SEMLEZ0XDYD_0.html
http://www.esa.int

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>