Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watery load for Ariane 5 ECA

20.09.2004


When the Ariane 5 ECA qualification flight lifts off in October, one of the ‘passengers’ will be 33.5 litres of water. Onboard will be the experimental Sloshsat-FLEVO satellite, designed to help European scientists find out more about the movement of water in microgravity and its effects on satellites.

Sloshsat-FLEVO is aptly named: slosh for the movement of water, sat for satellite and FLEVO, the project’s acronym: Facility for Liquid Experimentation and Verification in Orbit. Flevo is also the name of the latest province in the Netherlands to be reclaimed from the sea, and one of the sites of the Dutch National Aerospace Laboratory (NLR), the main contractor for this project. The cube-shaped Sloshsat-FLEVO is a mini satellite with a mass of just 129 kg. It will be launched on top of the cylinder-shaped Maqsat-B2 structure and placed in the lower passenger position under the Ariane 5 fairing.

This joint project between ESA’s Technology Research and Development Programme and the Netherlands Agency for Aerospace, is funded mainly through ESA’s General Study and Technology Programme. Sloshsat is designed to investigate fluid dynamics in microgravity conditions by monitoring the behaviour of 33.5 litres of deionised water, placed in a tank onboard the small satellite.



The composite tank has 270 sensors to measure the water’s distribution. Other sensors will measure the temperature, pressure and fluid velocity at 17 locations, and six accelerometers and three fibre-optic gyroscopes will monitor the spacecraft’s motion. Thrusters, powered by a cold gas nitrogen system, will provide linear and rotational movement to increase and control fluid motion.

This is the first time that a satellite has been dedicated to studying fluid behaviour in weightlessness. Spacecraft transporting supplies to the International Space Station, carrying out repairs to disabled communication and observation satellites or heading for other planets, often carry large quantities of fluids onboard in the form of propellant or water. This is why it is important to fully understand the effect a liquid’s movement can have on the attitude control of these spacecraft.
Many fluid dynamic models exist, as well as computational fluid dynamics (CFD) software, but to date the effect of sloshing on spacecraft control has been difficult to predict for real situations as it has not been validated.

Jan Vreeburg of NLR, the Principal Investigator for Sloshsat says “once the satellite is in orbit, scientists will be able to verify and validate existing models”. This will allow them to design new CFD numerical algorithms and liquid management systems for spacecraft.
As well as testing the effect of liquid movement on the attitude control of a spacecraft, Sloshsat-FLEVO will also test the effect of spacecraft manoeuvres on liquids. “For example,” reports Vreeburg, “tests will show us how best to manoeuvre a spacecraft to move the liquid in a tank near to the exit hole; this has to be done carefully to avoid ‘ingesting’ bubbles. Once thrust is generated by the engine, its action generally keeps the propellant at the exit hole.”

Almost ready for launch

Sloshsat-FLEVO has been installed inside the Sylda 5 multiple payload deployment system at Europe’s Spaceport in French Guiana since the end of August. On top of the Sylda is another passenger bound for space, an XTAR-EUR telecommunications satellite.

ESA’s spring-loaded ESAJECT mechanism, developed and built by the Belgian company Verhaert for 50 – 150 kg satellites, will eject Sloshsat-FLEVO once the launcher reaches geostationary transfer orbit. The satellite will then transmit data on the behaviour of the water in its tank under different motions controlled from the ground, for a minimum of 14 days. The total experiment time will be about 24 hours and last until the gas supply of the reaction control system is exhausted. Between experiment runs the water is allowed to settle and the battery will be recharged using solar panels.

Staff at the ESA Diane ground station in Kourou, French Guiana will control the satellite with the support of ESA’s European Space Operations Centre in Darmstadt, Germany. During operations, the Principal Investigators will be able to follow Sloshsat in near real time via the internet, from a server located at ESTEC, ESA’s European Space Research and Technology Centre in the Netherlands. Telemetry data will enable a virtual reality image to be created of both Sloshsat and the liquid in the tank.

Alain Conde Reiss | alfa
Further information:
http://www.esa.int/SPECIALS/Launchers_Home/SEMLEZ0XDYD_0.html
http://www.esa.int

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>