Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watery load for Ariane 5 ECA

20.09.2004


When the Ariane 5 ECA qualification flight lifts off in October, one of the ‘passengers’ will be 33.5 litres of water. Onboard will be the experimental Sloshsat-FLEVO satellite, designed to help European scientists find out more about the movement of water in microgravity and its effects on satellites.

Sloshsat-FLEVO is aptly named: slosh for the movement of water, sat for satellite and FLEVO, the project’s acronym: Facility for Liquid Experimentation and Verification in Orbit. Flevo is also the name of the latest province in the Netherlands to be reclaimed from the sea, and one of the sites of the Dutch National Aerospace Laboratory (NLR), the main contractor for this project. The cube-shaped Sloshsat-FLEVO is a mini satellite with a mass of just 129 kg. It will be launched on top of the cylinder-shaped Maqsat-B2 structure and placed in the lower passenger position under the Ariane 5 fairing.

This joint project between ESA’s Technology Research and Development Programme and the Netherlands Agency for Aerospace, is funded mainly through ESA’s General Study and Technology Programme. Sloshsat is designed to investigate fluid dynamics in microgravity conditions by monitoring the behaviour of 33.5 litres of deionised water, placed in a tank onboard the small satellite.



The composite tank has 270 sensors to measure the water’s distribution. Other sensors will measure the temperature, pressure and fluid velocity at 17 locations, and six accelerometers and three fibre-optic gyroscopes will monitor the spacecraft’s motion. Thrusters, powered by a cold gas nitrogen system, will provide linear and rotational movement to increase and control fluid motion.

This is the first time that a satellite has been dedicated to studying fluid behaviour in weightlessness. Spacecraft transporting supplies to the International Space Station, carrying out repairs to disabled communication and observation satellites or heading for other planets, often carry large quantities of fluids onboard in the form of propellant or water. This is why it is important to fully understand the effect a liquid’s movement can have on the attitude control of these spacecraft.
Many fluid dynamic models exist, as well as computational fluid dynamics (CFD) software, but to date the effect of sloshing on spacecraft control has been difficult to predict for real situations as it has not been validated.

Jan Vreeburg of NLR, the Principal Investigator for Sloshsat says “once the satellite is in orbit, scientists will be able to verify and validate existing models”. This will allow them to design new CFD numerical algorithms and liquid management systems for spacecraft.
As well as testing the effect of liquid movement on the attitude control of a spacecraft, Sloshsat-FLEVO will also test the effect of spacecraft manoeuvres on liquids. “For example,” reports Vreeburg, “tests will show us how best to manoeuvre a spacecraft to move the liquid in a tank near to the exit hole; this has to be done carefully to avoid ‘ingesting’ bubbles. Once thrust is generated by the engine, its action generally keeps the propellant at the exit hole.”

Almost ready for launch

Sloshsat-FLEVO has been installed inside the Sylda 5 multiple payload deployment system at Europe’s Spaceport in French Guiana since the end of August. On top of the Sylda is another passenger bound for space, an XTAR-EUR telecommunications satellite.

ESA’s spring-loaded ESAJECT mechanism, developed and built by the Belgian company Verhaert for 50 – 150 kg satellites, will eject Sloshsat-FLEVO once the launcher reaches geostationary transfer orbit. The satellite will then transmit data on the behaviour of the water in its tank under different motions controlled from the ground, for a minimum of 14 days. The total experiment time will be about 24 hours and last until the gas supply of the reaction control system is exhausted. Between experiment runs the water is allowed to settle and the battery will be recharged using solar panels.

Staff at the ESA Diane ground station in Kourou, French Guiana will control the satellite with the support of ESA’s European Space Operations Centre in Darmstadt, Germany. During operations, the Principal Investigators will be able to follow Sloshsat in near real time via the internet, from a server located at ESTEC, ESA’s European Space Research and Technology Centre in the Netherlands. Telemetry data will enable a virtual reality image to be created of both Sloshsat and the liquid in the tank.

Alain Conde Reiss | alfa
Further information:
http://www.esa.int/SPECIALS/Launchers_Home/SEMLEZ0XDYD_0.html
http://www.esa.int

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>