Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Left and right ears not created equal as newborns process sound

10.09.2004


Challenging decades of scientific belief that the decoding of sound originates from a preferred side of the brain, UCLA and University of Arizona scientists have demonstrated that right-left differences for the auditory processing of sound start at the ear.



Reported in the Sept. 10 edition of Science, the new research could hold profound implications for rehabilitation of persons with hearing loss in one or both ears, and help doctors enhance speech and language development in hearing-impaired newborns. "From birth, the ear is structured to distinguish between various types of sounds and to send them to the optimal side in the brain for processing," explained Yvonne Sininger, Ph.D., visiting professor of head and neck surgery at the David Geffen School of Medicine at UCLA. "Yet no one has looked closely at the role played by the ear in processing auditory signals."

Scientists have long understood that the auditory regions of the two halves of the brain sort out sound differently. The left side dominates in deciphering speech and other rapidly changing signals, while the right side leads in processing tones and music. Because of how the brain’s neural network is organized, the left half of the brain controls the right side of the body, and the left ear is more directly connected to the right side of the brain.


Prior research had assumed that a mechanism arising from cellular properties unique to each brain hemisphere explained why the two sides of the brain process sound differently. But Sininger’s findings suggest that the difference is inherent in the ear itself. "We always assumed that our left and right ears worked exactly the same way," she said. "As a result, we tended to think it didn’t matter which ear was impaired in a person. Now we see that it may have profound implications for the individual’s speech and language development."

Working with co-author Barbara Cone-Wesson, Ph.D., associate professor of speech and hearing sciences at the University of Arizona, Sininger studied tiny amplifiers in the outer hair cells of the inner ear. "When we hear a sound, tiny cells in our ear expand and contract to amplify the vibrations," explained Sininger. "The inner hair cells convert the vibrations to neural cells and send them to the brain, which decodes the input."

"These amplified vibrations also leak back out to the ear in a phenomena call otoacoustic emission (OAE)," added Sininger. "We measured the OAE by inserting a microphone in the ear canal."

In a six-year study, the UCLA/UA team evaluated more than 3,000 newborns for hearing ability before they left the hospital. Sininger and Cone-Wesson placed a tiny probe device in the baby’s ear to test its hearing. The probe emitted a sound and measured the ear’s OAE.

The researchers measured the babies OAE with two types of sound. First, they used rapid clicks and then sustained tones. They were surprised to find that the left ear provides extra amplification for tones like music, while the right ear provides extra amplification for rapid sounds timed like speech.

"We were intrigued to discover that the clicks triggered more amplification in the baby’s right ear, while the tones induced more amplification in the baby’s left ear," said Sininger. "This parallels how the brain processes speech and music, except the sides are reversed due to the brain’s cross connections."

"Our findings demonstrate that auditory processing starts in the ear before it is ever seen in the brain," said Cone-Wesson. "Even at birth, the ear is structured to distinguish between different types of sound and to send it to the right place in the brain."

Previous research supports the team’s new findings. For example, earlier research shows that children with impairment in the right ear encounter more trouble learning in school than children with hearing loss in the left ear.

"If a person is completely deaf, our findings may offer guidelines to surgeons for placing a cochlear implant in the individual’s left or right ear and influence how cochlear implants or hearing aids are programmed to process sound," explained Cone-Wesson. "Sound-processing programs for hearing devices could be individualized for each ear to provide the best conditions for hearing speech or music."

"Our next step is to explore parallel processing in brain and ear simultaneously," said Sininger. "Do the ear and brain work together or independently in dealing with stimuli? How does one-sided hearing loss affect this process? And finally, how does hearing loss compare to one-sided loss in the right or left ear?"

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>