Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teens in smoggy areas at high risk for starting adulthood with serious lung deficits

09.09.2004


USC study in NEJM signals likely future health problems



By age 18, the lungs of many children who grow up in smoggy areas are underdeveloped and will likely never recover, according to a study in this week’s issue of the New England Journal of Medicine.

The research is part of the Children’s Health Study, the longest investigation ever into air pollution and kids’ health. Between 1993 and 2001, study scientists from the Keck School of Medicine of the University of Southern California tracked levels of major pollutants in 12 Southern California communities while following the pulmonary health of 1,759 children as they progressed from 4th grade to 12th grade. The 12 communities included some of the most polluted areas in the greater Los Angeles basin, as well as several low-pollution sites outside the area.


Keck School researchers previously found that children who were exposed to more air pollution scored more poorly on respiratory tests. In this latest study, researchers analyzed the same children’s respiratory health at age 18, when lungs are almost completely mature. "Teenagers in smoggy communities were nearly five times as likely to have clinically low lung function, compared to teens living in low-pollution communities," explains W. James Gauderman, Ph.D., associate professor of preventive medicine at the Keck School and lead author of the study. People with clinically low lung function have less than 80 percent of the lung function expected for their age-a significant deficit that would raise concerns during a doctor’s exam.

"When we began the study 10 years ago, we had no idea we would find effects on the lung this serious," says John Peters, M.D., Hastings Professor of Preventive Medicine at the Keck School of Medicine, director of the Southern California Environmental Health Sciences Center, and senior author of the study.

Study technicians traveled to participating schools every year and tested children’s lung function, a measure of how well their lungs work. As an example, someone with sub-par lung function cannot exhale and blow up a balloon as quickly or as big as someone with good lung function could.

Researchers correlated the students’ lung health measurements with levels of air pollutants monitored in the communities during the same time period. They found greater deficits in lung development in teenagers who lived in communities with higher average levels of nitrogen dioxide, acid vapor, particulate matter with a diameter of less than 2.5 micrometers (about a tenth the diameter of a human hair) and elemental carbon. "These are pollutants that all derive from vehicle emissions and the combustion of fossil fuels," says Gauderman.

Deficits in lung function have both short- and long-term effects. "If a child or young adult with low lung function were to have a cold, they might have more severe lung symptoms, or wheezing," Gauderman says. "They may have a longer disease course, while a child with better lung function may weather it much better." And potential long-term effects are more alarming. "Low lung function has been shown to be second only to smoking as a risk factor for all-cause mortality," Gauderman explains.

Lung function grows steadily as children grow up, peaking at about age 18 in women and sometime in the early 20s in men. Lung function stays steady for a short time and then declines by 1 percent a year throughout adulthood. As lung function decreases to low levels in later adulthood , the risk of respiratory diseases and heart attacks increases.

Researchers are unsure how air pollution may retard lung development. Gauderman believes chronic inflammation may play a role, with air pollutants irritating small airways on a daily basis. Scientists also suspect that pollutants might dampen the growth of alveoli, tiny air sacs in the lungs.

The research team will continue to follow the study participants into their early 20s, when their lungs will mature and stop developing entirely. They seek to find out if the participants begin to experience respiratory symptoms and if those who moved away from a polluted environment show benefits.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>