Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab studies show two proteins prevented progressive nerve cell loss in Parkinson’s disease

09.09.2004


In recent years, scientists have made important strides in developing drugs that help patients manage the symptoms of Parkinson’s Disease – a chronic, progressive movement disorder affecting as many as one million Americans. But despite their effectiveness, the drugs don’t stop Parkinson’s disease from progressing, causing patients’ symptoms to eventually grow worse in spite of medication.



Now, researchers at Cedars-Sinai Medical Center have found that two specific proteins – "Sonic Hedgehog" and "Gli-1" – delivered via a genetically engineered virus into the brains of laboratory rats, prevented the progressive degeneration of nerve cells in the brain that cause Parkinson’s disease. The study, published in the September issue of the journal, Molecular Therapy, may lead to a new way to treat patients with advanced Parkinson’s Disease.

"Our results establish, for the first time, that viral transfer of Sonic hedgehog and Gli-1 - two proteins that are involved in early brain development, but are no longer present in the adult brain – may provide a new strategy to prevent progressive degeneration of the nerve cells in the brain that cause Parkinson’s disease," said Pedro Lowenstein, M.D., Ph.D., Director of the Gene Therapeutics Research Institute at Cedars-Sinai Medical Center, and a Professor of Medicine and Pharmacology at UCLA.


Parkinson’s disease occurs when the nerve cells in the part of the brain known as the "substantia nigra" that produce a chemical called dopamine begin to malfunction and progressively die. Dopamine acts as a chemical messenger to send signals to a part of the brain called the basal ganglia that controls movement and coordination. But as more of these cells die, less and less dopamine is produced, causing Parkinson’s disease.

To treat the symptoms of Parkinson’s disease, doctors rely on various types of drugs that work by helping to replenish dopamine. A drug called L-DOPA (levodopa), for example, is absorbed in the brain and changed into dopamine. Other drugs, work differently by either prolonging the effect of levodopa-formed dopamine or by actually mimicking dopamine. But regardless of how they work, patients often have to take more than one drug to either enhance the drug’s effects or to reduce the side effects that many of the drugs cause. As more cells die during the progression of the disease, these drugs lose their effectiveness.

"Because these drugs don’t stop the disease from progressing, we used a genetically engineered viral vector to deliver very specific molecules to see whether they would prevent the nerve cells in the brain from dying in adult rats with Parkinson’s," commented Maria Castro, Ph.D., Co-Director of the Gene Therapeutic Research Institute at Cedars-Sinai and a senior author of the study. "Ultimately, because we found that two of these molecules prevented cell death, we aim to translate this type of gene therapy into a clinical trial to determine whether it will stop the progression of the disease. Importantly, Sonic Hedgehog and Gli1, display novel mechanisms of action compared to other drugs utilized so far."

Genetically engineered viruses are used to transport genes and/or proteins into cells and have been used in gene therapy research for the last ten years. Just like a viral infection, they work by tricking cells into accepting them as part of their own genetic coding. The trick has been to alter the virus so that it delivers the desired genetic material, while removing any characteristics that make the virus dangerous.

To make viruses safe and effective, scientists remove the genetic coding that causes infection and engineer them so that they stop reproducing. The adenoviral vector used in this study, for example, has been genetically manipulated to selectively express proteins that can protect the neurons that are damaged during the course of Parkinson’s disease.

"Currently, we are constructing other versions of this virus that could eventually be used in clinical trials in humans that are safe even when the body mounts an immune response, and that could be switched ’on’ and ’off’ at will," said Dr. Castro. "In other words, these new viral vectors would effectively resist any attack by the immune system and have built-in switches that allow the doctor to regulate the delivery of the neuroprotective proteins as needed."

In the laboratory study, the investigators used an adenoviral vector to test the effectiveness of three proteins: Sonic Hedgehog (Shh), a signaling molecule that plays a key role in the development of the brain but is no longer present in the adult brain; Gli-1, a protein that turns genes on and off within the same signaling pathway; and Nurr1, a protein receptor that is needed to produce substantia nigra neurons in the brain.

To determine whether any of the three proteins would prevent nerve cells in the brain from dying, the investigators injected Shh, Gli-1 and Nurr1 into the brains of laboratory rats with Parkinson’s disease. The investigators found that nerve cells in the rats treated with Shh and Gli1, were protected, while no effect was seen in those treated with Nurr1.

"Given that these proteins are only present in the developing brain, our study demonstrates that we were able to use a genetically engineered virus to deliver them into the adult brains of laboratory rats with Parkinson’s disease and that they significantly protected nerve cells from dying," said Dr. Lowenstein.

Kelli Hanley | EurekAlert!
Further information:
http://www.cshs.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>