Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Imitative parrots just might tell you it’s all in the tongue


When it comes to making noise, both parrots and humans rely on extremely specialized vibrating organs in their throats. Now scientists at Indiana University and Leiden University in The Netherlands have shown for the first time that parrots, like humans, also can use their tongues to craft and shape sound.

Monk parakeets are native to South America. Released by their American owners on purpose or by accident, the parakeets have formed stable, feral populations in Florida, Connecticut and New York. Photo by: Kathleen Carr

"This is the first direct evidence that parrots are able to use their large tongues to change the acoustic properties of their vocalizations," said IU Bloomington neurologist Roderick Suthers, who participated in the research. "The basic idea here, we believe, is that motor control of tongue movements is an important part of communication, just as it is in humans."

It’s known that to produce sound, a parrot uses its syrinx, a voice box organ nestled between the trachea and lungs. The lingering question has been: What happens to that sound as it moves up and out of the throat? Ornithologists and bird enthusiasts have long noticed that parrots bob their tongues back and forth while they vocalize, but it wasn’t known whether the tongue motions contributed significantly to sound-making.

The report by Suthers and biologists Gabriel Beckers and Brian Nelson in the Sept. 7 issue of Current Biology shows that even tiny changes in the position of a parrot’s tongue can lead to big differences in sound. "Birdsong is an excellent model for human speech and also for the development of communicative behavior," Beckers said. "Song is something that has to be learned, and it can only be learned by listening. Very specific areas of the bird’s brain aid song and imitation. Humans have language centers. Before, we used to think all the complexity of parrot communication was because of the syrinx. Now we think it’s likely the tongue is involved, just like with human speech."

Beckers, the study’s lead author and a former IUB postdoctoral fellow, is now a research fellow at Leiden University. The syrinx operates similarly in all parrots. For this study the scientists used five monk parakeets, small parrots native to South America. While a speaker swept through a series of tones, from 500 to 11,000 Hz (from the B above a piano’s middle C to a high-pitched F beyond the keyboard’s range), the researchers measured how much the birds’ tongue position influenced the outgoing sound.

They found that a change of just a fraction of a millimeter in tongue position could significantly affect the qualities of the emerging sound. "By analogy, it’s larger than the difference between an A and an O in human speech," Beckers said.

The scientists also believe they are the first to identify four acoustic "formants" in parakeet sounds. Formants are small ranges of frequencies that remain strongly audible as sound travels past the throat, tongue, mouth and nasal cavities. The geometry of these passages deadens some frequencies but leaves others relatively unaffected. What’s left distinguishes the character of a sound -- in this case, the voice of a parakeet.

Human voices also have formants. Because of differences in genetics, development and behavior, these fingerprint-like formants vary greatly from individual to individual. By studying parrots, Beckers, Suthers and Nelson hope to learn more about what structures are responsible for that variation in both birds and humans.

David Bricker | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>