Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals first genetic step necessary for prostate cancer growth

01.09.2004


A new study from Fred Hutchinson Cancer Research Center reveals what may be the earliest step in the development of prostate cancer. The finding could open the door to new tests that predict whether the cancer will become aggressive and the development of treatments to prevent the condition from progressing.



The study, published in the Sept. 1 issue of Cancer Research, found that when mice are engineered to lose a single copy of a gene called Rb in their prostate, they develop a precancerous condition analogous to the earliest stages of human prostate cancer. Importantly, in the absence of additional genetic defects, the mice do not develop full-blown prostate cancer.

This suggests that the loss of Rb in prostate cells could be the initial spark that in some men eventually leads to prostate cancer, said senior author Norman Greenberg, Ph.D., a member of Fred Hutchinson’s Clinical Research Division.


"Finding the loss of Rb is like seeing smoke," he said. "We now need to figure out the genetic predictors for fire."

To identify genetic events that cause early-stage prostate cancer, Greenberg and colleagues focused on the Rb gene. The gene is known to be defective in a variety of cancer types, including up to 60 percent of human prostate cancers. Rb is a member of a family of genes known as tumor suppressors, which normally work to keep cells dividing at a healthy pace. Cells with defective or missing tumor suppressors lose their brakes on cell division, a hallmark of cancer.

The researchers developed a system using mice that were genetically engineered to self-destruct one or both copies of its Rb gene in prostate cells. The important difference between these mice and the standard gene knock-out strategy is that the Rb gene stays intact in all other tissues of the animal, a situation that closely resembles how genes are inactivated or lost in cancers that occur sporadically in humans.

The scientists found that upon losing even one copy of the Rb gene in prostate cells, mice developed a condition known as focal hyperplasia, characterized by precancerous growths. Nearly a year after they formed, the growths did not become cancerous.

"This suggests to us that loss of a single copy of Rb can initiate this excess cell growth but is not sufficient for cancer to develop," Greenberg said. "Perhaps the most significant finding was that loss of the second copy of Rb – an event previously thought to be essential for tumor progression – did not appear to accelerate the disease. Losing one copy was enough to get things going."

While Greenberg had previously demonstrated that combined loss of Rb and related proteins and the p53 tumor suppressor would predispose mice to develop aggressive prostate cancer, the role of Rb in tumor initiation remained enigmatic. Further research is needed to determine which secondary mutations can push these early stage growths into prostate cancer. Greenberg said that tests to distinguish between men who only have Rb mutations and those who have acquired additional genetic defects could help doctors decide when or whether aggressive treatment is warranted.

"Right now, there is no way to absolutely predict at an early stage whether a man’s prostate cancer is slow-growing and non-lethal, meaning that many men receive unnecessary treatment that can cause serious side effects," he said.

Scientists have had a difficult time establishing the causal relationship between genes and cancer, Greenberg said. "We’ve addressed this by using a mouse system that allows us to selectively eliminate genes in the epithelial cells of the prostate. Our experimental approach allows us to closely mimic what happens in man and gives us a glimpse into the natural history of the disease that we haven’t had before." Greenberg developed a widely used genetically engineered strain of mice that develops prostate cancer at the Baylor College of Medicine prior to joining Fred Hutchinson in January.

"These models represent a new frontier in cancer research because they give us a better insight into what specific genes really do in a live mammal," he said. "The mice give us a highly reproducible glimpse at the earliest forms of cancer – those rarely seen in the clinic – and therefore can be used to develop new markers for detection as well as new strategies for prevention and early intervention."

Prostate cancer is the second leading cause of death for men in the United States. This year, more than 230,000 men will be diagnosed with the disease, in large part due to widespread screening with the prostate-specific antigen, or PSA, test. The test has been controversial because it cannot distinguish between men who have non-progressing forms of the disease that may never cause harm and those who have aggressive cancers that require treatment. Researchers are eager to develop tests that can stratify early stage prostate cancers by their likelihood to worsen, an achievement that could spare many men from unnecessary surgery or radiation therapy.

With this in mind, Greenberg said his next goal is to identify the additional mutations - such as occur in p53 or other tumor suppressor genes - that must collaborate with Rb to drive the benign condition to cancer. Ideally, blood or other simple tests to detect these mutations could be developed that reveal predictive information about a man’s type of cancer well before he is in danger.

"The idea is to set the bar for detection as early as possible," Greenberg said. "Ideally, we’d hope that a man diagnosed at an early age with prostate cancer could be assured that his cancer wasn’t likely to progress or that he needed early intervention that could save his life."

The study, funded by the National Cancer Institute and the Prostate Cancer Foundation, was led by Lisette Maddison, Ph.D., a former graduate student of Greenberg’s who is now a postdoctoral fellow at Oregon Health and Science University. Other coauthors were Brent Sutherland, Ph.D., a postdoctoral fellow in Greenberg’s lab; and Roberto Barrios, a pathologist at Baylor College of Medicine.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org.

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>