Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds genetic regional reductions of gray matter may be underlying cause of dyslexia

24.08.2004


Researchers in Italy have observed significant reductions of gray matter volume in areas of the brain associated with language processing among people with a family history of dyslexia in comparison with controls with no reading problems. Published in the August 24 issue of Neurology, the scientific journal of the American Academy of Neurology, the study also lends support to previous studies suggesting intensive reading therapy activates areas of the brain necessary for word de-coding.



The study of 10 people with familial dyslexia and 11 controls was the first to employ an advanced testing method – voxel-based morphometry (VBM) – which allows more in-depth detection and measurement of gray-white tissue volume and density differences than other testing tools, including magnetic resonance imaging, or MRI. The brain is made up of gray matter, where the brain cells reside, and white matter, where the nerve tracts that allow connections between different parts of the brain and spinal cord reside. The study also was the first to account for variabilities in whole brain volume, age of the subjects and differences in brain shape.

Each of the subjects with dyslexia had at least one close relative with either clinically evident dyslexia or a long history of reading problems.


Statistically significant gray matter abnormalities were located in many parts of the brain that are important for language functions: the planum temporale, inferior temporale cortex, cerebellar nuclei, the left superior and inferior temporal gyrus, and the right middle temporal gyrus.

“Previous studies employing MRI have suggested that intensive remedial training results in the activation of the posterior portion of the left superior temporal gyrus, which is necessary for the decoding of written language,” said study author Daniela Perani, MD, of Vita-Salute San Raffaele University, Milan, Italy. “Our research showing reduced gray matter volume, including this region of the brain, adds further support to the effectiveness of intensive reading remediation therapy to correct the reading problems associated with dyslexia.”

The study was supported by the Associazione Italiana Dislessia and by the Connectivity in Language Rehabilitation project sponsored by the Vth European Program.

The American Academy of Neurology, an association of more than 18,000 neurologists and neuroscience professionals, is dedicated to improving patient care through education and research. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Parkinson’s disease, ALS (Lou Gehrig’s disease), dementia, West Nile virus, and ataxia.

Marilee Reu | NEUROLOGY news
Further information:
http://www.aan.com
http://www.neurology.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>