Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment of blood sugar levels in intensive care patients results in reduction in mortality

16.08.2004


Mayo Clinic Proceedings study highlights Òreal-lifeÓ ICU experience



A study in the August issue of Mayo Clinic Proceedings outlines how strictly controlling the levels of glucose, or sugar, in a patient’s blood can increase the survival rate of critically ill patients.

James Krinsley, M.D., the author of the study, is director of critical care at The Stamford Hospital in Stamford, Conn., and associate clinical professor of medicine at Columbia University College of Physicians and Surgeons. Dr. Krinsley says conducting the study in a community hospital should give other hospitals confidence that they can maintain the necessary level of glucose monitoring and treatment without being a large-scale research hospital.


"This is a low-cost, effective intervention that can profoundly affect patients," says Dr. Krinsley. "Intensive glucose management will eventually become a standard of care in ICUs (intensive care units) worldwide."

The Stamford Hospital Intensive Care Unit has 14 beds and cares for a mixed adult population of medical, surgical and cardiac patients. Dr. Krinsley analyzed 800 consecutive patients admitted to the unit just prior to institution of the glucose management protocol and compared them to the first 800 consecutive patients admitted after the protocol was put into place. The protocol involved intensive monitoring of the glucose levels in patients and treating any elevation over 140 milligrams per deciliter (mg/dL) with injections of insulin under the skin or continuous intravenous insulin infusions, depending on the level of elevation. The normal range of blood glucose is 80-110 mg/dL.

The hospital mortality rate of the treated patients decreased 29.3 percent. This represents 49 saved lives from the first 800 patients treated with the protocol. There was also a decrease in the development of new kidney failure and a decrease in the need for red blood cell transfusions. The ICU length of stay decreased among the patients treated with the protocol. Finally, there was no increase in nursing staff as a result of the change in practice.

Intensive glucose management among critically ill patients was pioneered by Greet Van den Berghe, M.D., Ph.D., of the Department of Intensive Care Medicine at the University of Leuven in Leuven, Belgium. She reported decreased mortality and organ dysfunction among a population of surgical ICU patients requiring mechanical ventilation to aid breathing, 62 percent of whom had undergone cardiac surgery. Dr. Van den Berghe’s study, published in The New England Journal of Medicine in 2001, prompted Dr. Krinsley to analyze his own ICU’s experience. Dr. Krinsley’s paper describing the relationship between increasing glucose levels and increasing mortality among critically ill patients was published by Mayo Clinic Proceedings in December 2003.

The current study from Stamford Hospital is the first to show that intensive glucose management can improve survival among a general population of critically ill patients, similar to the patients found in the majority of ICUs around the world. Dr. Van den Berghe’s editorial in the August issue of Mayo Clinic Proceedings corroborates this. She wrote that the study by Dr. Krinsley shows the impact of tight glucose control in a "real life" ICU. She congratulated the Stamford Hospital ICU team for "thoroughly studying the impact of implementation of a novel ’routine’ strategy in the ICU on patients’ outcomes and on the workload of the unit" and stated that the current study "extended the knowledge" gained from her study "by showing that the benefit [of tight glucose control] is present in a medical-surgical population."

Blood glucose levels increase commonly in critical illness due in part to stress hormone responses and the effect of medications and nutritional interventions given as part of patient treatment. The standard of care in ICUs until recently was to accept moderate elevations of glucose, even up to 200-225 mg/dL, without using insulin treatment, says Dr. Krinsley. The current study will help to change that paradigm, he says.

John Murphy | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>