Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study reveals potential for more efficient stem cell transplants


Indiana University School of Medicine study published in Science

Blood-making stem cells found in bone marrow, umbilical cord blood and some adult blood products have been used in transplants to treat cancers, leukemia and immune system disorders and to restore blood cell production compromised by chemotherapy and irradiation. But insufficient numbers of donor cells sometime limit success, especially with cord blood transplants.

An Indiana University School of Medicine study suggests these stem cells can be enhanced in trafficking to the bone marrow and may increase transplant success, particularly in adults. The study, "Modulation of Hematopoietic Stem Cell Homing and Engraftment by CD26," appears in the Aug. 13 issue of Science.

Hematopoietic stem cells, rich sources found in the umbilical cord and placenta, are precursors of mature blood cells. They have the ability to replace damaged or diseased bone marrow systems and can continue to produce mature blood cells. Bone marrow is found in soft fatty tissue inside bones, where red blood cells, white blood cells and platelets are produced and developed.

"The efficiency of hematopoietic stem cell transplantation is important when donor-cell numbers are limiting," says study co-author Hal E. Broxmeyer, Ph.D., Distinguished Professor and chair of the School’s Department of Microbiology and Immunology. "Attempts at growing hematopoietic stem cells outside the body for clinical transplantation have not been encouraging."

Using a mouse model, the study sought an alternative means to enhance the engraftment of stem cells by increasing their homing capability to the bone marrow. IU researchers focused on CD26, an enzyme on the surface of stem cells. They inhibited or deleted the CD protein on donor cells and were able to boost short-term homing, long-term engraftment and hematopoietic stem cell repopulation.

"The results were revealing," says Dr. Broxmeyer. "By inhibiting or deleting CD26, it was possible to increase greatly the efficiency of transplantation. This indicates that improvement of stem cell transplants may be possble in the clinic."

The IU research team also included principal author Kent W. Christopherson, Ph.D., Giao Hangoc, D.V.M., and Charlie Mantel. All are affiliated with the Walther Oncology Center, which Dr. Broxmeyer directs.

Dr. Broxmeyer’s laboratory research, which led to the use of umbilical cord blood for stem cell transplantation to treat a large number of malignant and non-malignant diseases, is internationally recognized.

He was a member of the team that successfully performed the first cord blood transplant in 1988 in France for a young boy suffering from Fanconi anemia, a pre-leukemic and often fatal disease. Dr. Broxmeyer’s laboratory set up the world’s first cord blood bank, which processed the blood for the first five cord blood transplants.

Joe Stuteville | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>