Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Hyperspectral Imaging Endoscope: A New Tool For Non-Invasisve In Vivo Cancer Detection

10.08.2004


A newly designed endoscope, capable of providing sub-second polarized spectral images of tissue in vivo (in the body), allows physicians and surgeons to non-invasively survey and sample an entire area without actually removing tissue, and may offer hope as a new tool for detecting cancer early. Researchers from Cedars-Sinai Medical Center in Los Angeles and Carnegie Mellon University in Pittsburgh describe the instrument’s capabilities and clinical applications in the July 2004 issue of Progress in Biomedical Optics and Imaging.

The new device, named the Hyperspectral Imaging Endoscope (HSIE), is a standard medical endoscope enhanced with a customized imaging fiber. Working together with a camera, a laptop computer and a tunable light source covering the visible and near-infrared range, the HSIE system is capable of acquiring rapid spectral images of tissues, allowing physicians to non-invasively survey and sample an entire area of tissue in vivo (within the body). Compared to traditional biopsy where a small amount of tissue is removed and then examined in a laboratory, the HSIE system provides a non-contact method of gaining as much information as possible about an area without removing any tissue.

The system is relatively simple and based on the intrinsic properties of tissue and light, explains Daniel Farkas, Ph.D., Director of the Minimally Invasive Surgical Technologies Institute at Cedars-Sinai, and one of the study authors. “When light impacts tissue, it gives back a certain scattering pattern with spectral oscillations depending on the size of the scattering object. This pattern gives us a relatively quantitative idea whether or not a tissue area contains cancerous cells since the nuclei of cells in pre-cancerous and cancerous tissues are enlarged. The theory and spectroscopy have been beautifully worked out by our colleagues in Boston and Los Alamos, and we have now moved this type of investigation into the endoscopic imaging domain.”



The pilot study using the HSIE system involved examining epithelial tissue derived from lung cancer specimens. Currently the number one cause of cancer death worldwide, lung cancer is difficult to detect in its early stages and often isn’t found until after it has spread.

At the University of Pittsburgh Medical Center and Allegheny General Hospital, the two clinical sites where the first version of the HSIE instrument was tested, data were gathered from patients who had been treated previously for lung cancer and were to undergo an endoscopic examination to see if the cancer had returned. The area to be biopsied in the traditional way by the surgeon was first scanned using the HSIE, and then sent to the laboratory. The result of the pathological examination was then treated as “ground truth.” According to Dr. Farkas, there was a good correlation between the HSIE imaging and the pathologists’ diagnoses.

Based on the experience of physicians participating in the pilot study, Dr. Farkas anticipates that the medical community will embrace the new endoscope in its practices. “Physicians can use their own endoscope of choice exactly as they have before. By using this additional fiber, they’ll be able to have either two kinds of images on separate screens or overlay the spectrally classified image onto the regular image. In early acceptance stages, this could only guide biopsy, but as the matches with pathology are confirmed, the true diagnostic value of HSIE could be established.”

Dr. Farkas, a biophysicist and past Fulbright scholar, is the vice chair for research of Cedars-Sinai’s Department of Surgery as well as director of the Minimally Invasive Surgical Technologies Institute, which was formed in May 2002 to pursue the development and application of advanced technologies in surgery.

While epithelial tissue is the primary application, Dr. Farkas said the HSIE system can also be used for gastrointestinal investigations and maybe even for breast duct endoscopy.

“Surgery is clearly gravitating to the minimally invasive arena. The technology we employed in building the HSIE system gives us a great opportunity to improve a number of important components of surgical intervention. We are working now on an implementation using acousto-optic tunable filters, invented for hyperspectral satellite reconnaissance. It may sound like science fiction now, but I think we may ultimately be able to use the endoscope to not only detect cancers early, but to treat them using modalities such as localized photodynamic therapy, laser ablation or gene therapy. This closer coupling, spatially and temporally, between diagnosis and treatment may be the cornerstone of future surgical intervention.”

The study was funded by the National Institutes of Health (NCI Unconventional Innovation Program, N01-CO-07119), the National Science Foundation (Major Instrumentation Grant BESOO 79483) and the Pennsylvania Department of Health (Commonwealth Universal Research Enhancement program, Tobacco Settlement Act 77-2001).

Sandra Van | Cedars-Sinai Media
Further information:
http://www.csmc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>