Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid derived from aloe plant prolongs life after hemorrhagic shock in animal study

27.07.2004


Results suggest the fluid could increase survival in trauma patients and wounded soldiers



A novel resuscitation fluid derived from aloe vera that was developed by researchers at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine has the potential to save the lives of patients with massive blood loss, according to results of an animal study published in the August edition of the medical journal Shock. The findings could have a significant impact on the treatment of hemorrhagic shock caused by both civilian and military trauma.
In a rodent model of hemorrhagic shock, animals that were given a very small amount of the fluid, an aloe vera-derived drag reducing polymer (DRP), had significantly longer survival time and increased systemic whole body oxygen consumption, even in the absence of resuscitation with blood or other fluids, compared to animals that did not receive DRP.

"We hope this fluid will offer a viable solution to a significant problem, both on and off the battlefield. Typically, hemorrhagic shock is treated by controlling ongoing bleeding and restoring blood volume by infusing a lactate solution and packed red blood cells. Soldiers wounded in combat often lose significant amounts of blood, and there is no practical way to replace the necessary amount of blood fast enough on the front lines. When this happens, there is inadequate perfusion of the organs which quickly leads to a cascade of life-threatening events," said senior author Mitchell P. Fink, M.D., professor and chair, department of critical care medicine and Watson Professor of Surgery at the University of Pittsburgh School of Medicine.



"Medics would need only to carry a small amount of this solution, which could feasibly be administered before the soldier is evacuated to a medical unit or facility," he added.

The central ingredient of Pitt’s resuscitation fluid comes from the slick substance inside the leaves of the aloe vera plant. A so-called mucilage, it is rich in polysaccharides and has a high molecular mass and specific "visco-elastic" properties that allow it to reduce resistance to turbulent flow when added to a fluid at minute concentrations.

"As a drag reducing polymer, it may provide better diffusion of oxygen molecules from red blood cells to tissues because of its ability to better mix in the plasma surrounding red blood cells," explained Marina Kameneva, Ph.D., research associate professor of surgery and bioengineering, University of Pittsburgh, and director of the Artificial Blood Program at the McGowan Institute, who developed the fluid and has been researching its potential for the past several years.

In the current study, lead by Carlos A. Macias, M.D., a visiting research associate in the department of critical care medicine at the University of Pittsburgh’s School of Medicine, five of 10 rats that were injected with a small amount of a normal saline solution survived four hours after hemorrhagic shock. Of the animals treated with a same amount of saline and the aloe-derived DRP, eight of 10 survived. The animals treated with DRP also fared better in another experiment involving more severe blood loss; five of 15 survived the two-hour observation period, compared to one of 14 treated with saline solution alone. Seven animals receiving no treatment all died within 35 minutes.

According to the Department of Health and Human Services, trauma is the leading cause of death for those under the age of 40. In the United States, traumatic injuries result in approximately 150,000 deaths per year; complications resulting from the loss of large amounts of blood account for almost half these deaths.

In addition to Drs. Fink, Kameneva and Macias, authors of the study are Jyrki J. Tenhunen, M.D., Ph.D., visiting research associate in the department of critical care medicine at the University of Pittsburgh’s School of Medicine; and Juan-Carlos Puyana, M.D., associate professor of critical care medicine and surgery at Pitt and critical care director of the trauma/surgery intensive care units at the University of Pittsburgh Medical Center.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>