Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid derived from aloe plant prolongs life after hemorrhagic shock in animal study

27.07.2004


Results suggest the fluid could increase survival in trauma patients and wounded soldiers



A novel resuscitation fluid derived from aloe vera that was developed by researchers at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine has the potential to save the lives of patients with massive blood loss, according to results of an animal study published in the August edition of the medical journal Shock. The findings could have a significant impact on the treatment of hemorrhagic shock caused by both civilian and military trauma.
In a rodent model of hemorrhagic shock, animals that were given a very small amount of the fluid, an aloe vera-derived drag reducing polymer (DRP), had significantly longer survival time and increased systemic whole body oxygen consumption, even in the absence of resuscitation with blood or other fluids, compared to animals that did not receive DRP.

"We hope this fluid will offer a viable solution to a significant problem, both on and off the battlefield. Typically, hemorrhagic shock is treated by controlling ongoing bleeding and restoring blood volume by infusing a lactate solution and packed red blood cells. Soldiers wounded in combat often lose significant amounts of blood, and there is no practical way to replace the necessary amount of blood fast enough on the front lines. When this happens, there is inadequate perfusion of the organs which quickly leads to a cascade of life-threatening events," said senior author Mitchell P. Fink, M.D., professor and chair, department of critical care medicine and Watson Professor of Surgery at the University of Pittsburgh School of Medicine.



"Medics would need only to carry a small amount of this solution, which could feasibly be administered before the soldier is evacuated to a medical unit or facility," he added.

The central ingredient of Pitt’s resuscitation fluid comes from the slick substance inside the leaves of the aloe vera plant. A so-called mucilage, it is rich in polysaccharides and has a high molecular mass and specific "visco-elastic" properties that allow it to reduce resistance to turbulent flow when added to a fluid at minute concentrations.

"As a drag reducing polymer, it may provide better diffusion of oxygen molecules from red blood cells to tissues because of its ability to better mix in the plasma surrounding red blood cells," explained Marina Kameneva, Ph.D., research associate professor of surgery and bioengineering, University of Pittsburgh, and director of the Artificial Blood Program at the McGowan Institute, who developed the fluid and has been researching its potential for the past several years.

In the current study, lead by Carlos A. Macias, M.D., a visiting research associate in the department of critical care medicine at the University of Pittsburgh’s School of Medicine, five of 10 rats that were injected with a small amount of a normal saline solution survived four hours after hemorrhagic shock. Of the animals treated with a same amount of saline and the aloe-derived DRP, eight of 10 survived. The animals treated with DRP also fared better in another experiment involving more severe blood loss; five of 15 survived the two-hour observation period, compared to one of 14 treated with saline solution alone. Seven animals receiving no treatment all died within 35 minutes.

According to the Department of Health and Human Services, trauma is the leading cause of death for those under the age of 40. In the United States, traumatic injuries result in approximately 150,000 deaths per year; complications resulting from the loss of large amounts of blood account for almost half these deaths.

In addition to Drs. Fink, Kameneva and Macias, authors of the study are Jyrki J. Tenhunen, M.D., Ph.D., visiting research associate in the department of critical care medicine at the University of Pittsburgh’s School of Medicine; and Juan-Carlos Puyana, M.D., associate professor of critical care medicine and surgery at Pitt and critical care director of the trauma/surgery intensive care units at the University of Pittsburgh Medical Center.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>