Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI Technique Used to Detect Early Signs of Multiple Sclerosis

19.07.2004


An innovative study at Robarts Research Institute provides early evidence that hospital MRI scanners can be used to detect distinct brain cell abnormalities that are predictors of multiple sclerosis (MS).



In a preclinical study in rats with a disease similar to the human form, Robarts scientist Dr. Paula Foster used an injection of nano-particles of iron oxide, which exhibit magnetic qualities and can be detected by an MRI scanner.

During the acute inflammatory phase of the disease, these particles were then picked up by circulating inflammatory cells (leukocytes) that went on to infiltrate brain tissue and cause abnormalities called perivascular cuffs.


These abnormalities -- seen in this study for the first time using MRI -- can be used to predict the occurrence of multiple sclerosis (MS) lesions. The results of the study, co-authored by Ayman Oweida and Beth Dunn, are featured on the cover of the latest issue of the scientific journal Molecular Imaging.

“Our collaborative research projects in molecular imaging at Robarts -- in traumatic spinal cord injury, diabetes, tumor cell tracking and MS -- are yielding very promising results,” said Dr. Foster, whose study used a novel micro-imaging system fitted to the MRI scanner at London Health Sciences Centre that was developed and built in collaboration with Dr. Brian Rutt, also a Robarts scientist, and colleague Andrew Alejski, an electrical engineer. “The ultimate goal of this work is to be able to give clinicians new ways to see and treat disease at the earliest possible stage.”

Molecular imaging, a branch of “nano-medicine”, is an emerging field that aims to advance understanding in biology and medicine by capturing non-invasive images of important cellular and molecular events during the onset, progression and treatment of disease. Last year, Drs. Foster and Rutt, published the first evidence that individual cells could be detected using 1.5 Tesla MRI scanners, which are found in thousands of hospitals around the world.

Although molecular imaging is in its formative stages (this September, for example, marks only the 3rd annual meeting of the Society for Molecular Imaging), targeting molecular processes will allow earlier detection and characterization of disease, direct assessment of treatment effects and better understanding of disease processes in living tissues. This represents a profound shift in the overall purpose of medical imaging, to provide more of physiological and functional information vs. the conventional “structural-anatomic” approach practiced by radiologists.

“It is an exciting thought to consider the imaging and detection of ‘pre-disease’ states at a time when intervention may provide more effective therapy,” said Dr. Foster, who is also an assistant professor in the Department of Medical Biophysics at The University of Western Ontario.

| newswise
Further information:
http://www.robarts.ca

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>