Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI Technique Used to Detect Early Signs of Multiple Sclerosis

19.07.2004


An innovative study at Robarts Research Institute provides early evidence that hospital MRI scanners can be used to detect distinct brain cell abnormalities that are predictors of multiple sclerosis (MS).



In a preclinical study in rats with a disease similar to the human form, Robarts scientist Dr. Paula Foster used an injection of nano-particles of iron oxide, which exhibit magnetic qualities and can be detected by an MRI scanner.

During the acute inflammatory phase of the disease, these particles were then picked up by circulating inflammatory cells (leukocytes) that went on to infiltrate brain tissue and cause abnormalities called perivascular cuffs.


These abnormalities -- seen in this study for the first time using MRI -- can be used to predict the occurrence of multiple sclerosis (MS) lesions. The results of the study, co-authored by Ayman Oweida and Beth Dunn, are featured on the cover of the latest issue of the scientific journal Molecular Imaging.

“Our collaborative research projects in molecular imaging at Robarts -- in traumatic spinal cord injury, diabetes, tumor cell tracking and MS -- are yielding very promising results,” said Dr. Foster, whose study used a novel micro-imaging system fitted to the MRI scanner at London Health Sciences Centre that was developed and built in collaboration with Dr. Brian Rutt, also a Robarts scientist, and colleague Andrew Alejski, an electrical engineer. “The ultimate goal of this work is to be able to give clinicians new ways to see and treat disease at the earliest possible stage.”

Molecular imaging, a branch of “nano-medicine”, is an emerging field that aims to advance understanding in biology and medicine by capturing non-invasive images of important cellular and molecular events during the onset, progression and treatment of disease. Last year, Drs. Foster and Rutt, published the first evidence that individual cells could be detected using 1.5 Tesla MRI scanners, which are found in thousands of hospitals around the world.

Although molecular imaging is in its formative stages (this September, for example, marks only the 3rd annual meeting of the Society for Molecular Imaging), targeting molecular processes will allow earlier detection and characterization of disease, direct assessment of treatment effects and better understanding of disease processes in living tissues. This represents a profound shift in the overall purpose of medical imaging, to provide more of physiological and functional information vs. the conventional “structural-anatomic” approach practiced by radiologists.

“It is an exciting thought to consider the imaging and detection of ‘pre-disease’ states at a time when intervention may provide more effective therapy,” said Dr. Foster, who is also an assistant professor in the Department of Medical Biophysics at The University of Western Ontario.

| newswise
Further information:
http://www.robarts.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>