Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Impact of Earth’s Rising Atmospheric Carbon Dioxide Found in World Oceans


An international team of scientists has completed the first comprehensive study of the ocean storage of carbon dioxide derived from human activity, called anthropogenic CO2, based on a decade-long survey of global ocean carbon distributions in the 1990s.

The findings, along with those detailed in a companion paper on the impacts of anthropogenic CO2 on the chemistry of the oceans and the potential response of marine animals and plants to changes in CO2 levels, will be published in the July 16 issue of the journal Science.

"About half of the anthropogenic CO2 taken up over the last 200 years can be found in the upper 10 percent of the ocean," said Christopher Sabine, an oceanographer at NOAA’s Pacific Marine Environmental Laboratory (PMEL) in Seattle, Wash. Sabine is the lead author of one of the papers. "The ocean has removed 48 percent of the CO2 we have released to the atmosphere from burning fossil fuels and cement manufacturing."

Over the long-term, the ocean has been the only reservoir on Earth to consistently take up anthropogenic CO2 from the atmosphere. This uptake changes seawater chemistry, and can have significant impacts on the biology of the upper oceans.

The global survey combined carbon and other ocean measurements (such as temperature, salinity, oxygen, nutrients and chlorofluorocarbon tracers) in the Atlantic, Pacific, and Indian Oceans. These oceans have taken up about 118 billion metric tons of anthropogenic CO2 between 1800 and 1994, about a third of their long-term potential.

The researchers, including scientists from the United States, South Korea, Australia, Canada, Japan, Spain, and Germany, reviewed data gathered during the 1990s as part of three major research programs: the National Science Foundation (NSF)-led World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS); and the National Oceanic and Atmospheric Administration (NOAA)’s Ocean-Atmosphere Carbon Exchange Study (OACES).

The new global data set of ocean carbon system observations, co-sponsored in the United States by NSF, NOAA and the Department of Energy, is unprecedented, say scientists, with 10 times more observations and 10 times better accuracy than the previous global survey in the 1970s.

“This research presents the first complete synthesis of modern global ocean inorganic carbon measurements,” said James Yoder, director of NSF’s ocean sciences division. “The results are among the most intriguing yet from the WOCE and JGOFS programs. These new measurements, when coupled with how much anthropogenic carbon dioxide is known to accumulate in the atmosphere, show that the ocean and atmosphere are the two primary ‘sinks’ [holding tanks] of this carbon dioxide since the beginning of the industrial revolution. The land is the ‘source.’”

But that ocean “sink” may be changing, the studies conclude. “Feedbacks between the ocean and atmosphere involving air-sea exchange, ocean circulation and ocean biological processes need to be better understood,” said Yoder.

Analysis of CO2 levels in ice cores have shown scientists that for the 400,000 years before the industrial revolution began in the 1800s, atmospheric CO2 concentrations remained between 200 and 280 parts per million. Today CO2 levels are reaching 380 parts per million in the atmosphere. "If the ocean had not removed 118 billion metric tons of anthropogenic carbon between 1800 and 1994, the CO2 level in the atmosphere would be about 55 parts per million greater than currently observed," said Sabine.

"Because CO2 is an acid gas, the surface ocean pH is dropping," said Richard Feely, a marine chemist at PMEL, and lead author of the companion paper. If current scenarios are realized, surface ocean pH could drop lower than it has been for more than five million years, he said.

Feely and colleagues describe two major impacts of the oceanic uptake of anthropogenic CO2: They demonstrate that a substantial amount of the calcium carbonate, found in shells of marine animals living in surface waters, dissolves in the upper ocean. They then summarize the available evidence on the response of marine calcifying organisms to elevated CO2.

Feely noted that scientists have seen a reduced ability to produce protective calcium carbonate shells in many species of marine organisms at high CO2 levels, including corals and plankton, drifting plants and animals on which other marine life feeds.

"Based on our present knowledge, it appears that as seawater CO2 levels rise the skeletal growth rates of calcareous plankton will be reduced as a result of the effects of CO2 on calcification," said Victoria Fabry, a biologist at California State University at San Marcos and a paper co-author. Recent studies have shown that calcification rates can drop by as much as 25 to 45 percent at CO2 levels equivalent to atmospheric concentrations of 700 to 800 parts per million. Those levels will be reached by the end of this century if fossil fuel consumption continues at projected levels.

The scientists note that the dissolving calcium carbonate shells also partially act to neutralize CO2, thus allowing the ocean to take up more carbon dioxide from the atmosphere. However, the effects of decreased calcification in microscopic algae and animals could alter marine food webs and, combined with other changes in salinity, temperature and nutrients, could substantially alter the diversity and productivity of the oceans.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: “subscribe nsfnews John Smith”)

| newswise
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>