Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of Earth’s Rising Atmospheric Carbon Dioxide Found in World Oceans

19.07.2004


An international team of scientists has completed the first comprehensive study of the ocean storage of carbon dioxide derived from human activity, called anthropogenic CO2, based on a decade-long survey of global ocean carbon distributions in the 1990s.

The findings, along with those detailed in a companion paper on the impacts of anthropogenic CO2 on the chemistry of the oceans and the potential response of marine animals and plants to changes in CO2 levels, will be published in the July 16 issue of the journal Science.

"About half of the anthropogenic CO2 taken up over the last 200 years can be found in the upper 10 percent of the ocean," said Christopher Sabine, an oceanographer at NOAA’s Pacific Marine Environmental Laboratory (PMEL) in Seattle, Wash. Sabine is the lead author of one of the papers. "The ocean has removed 48 percent of the CO2 we have released to the atmosphere from burning fossil fuels and cement manufacturing."



Over the long-term, the ocean has been the only reservoir on Earth to consistently take up anthropogenic CO2 from the atmosphere. This uptake changes seawater chemistry, and can have significant impacts on the biology of the upper oceans.

The global survey combined carbon and other ocean measurements (such as temperature, salinity, oxygen, nutrients and chlorofluorocarbon tracers) in the Atlantic, Pacific, and Indian Oceans. These oceans have taken up about 118 billion metric tons of anthropogenic CO2 between 1800 and 1994, about a third of their long-term potential.

The researchers, including scientists from the United States, South Korea, Australia, Canada, Japan, Spain, and Germany, reviewed data gathered during the 1990s as part of three major research programs: the National Science Foundation (NSF)-led World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS); and the National Oceanic and Atmospheric Administration (NOAA)’s Ocean-Atmosphere Carbon Exchange Study (OACES).

The new global data set of ocean carbon system observations, co-sponsored in the United States by NSF, NOAA and the Department of Energy, is unprecedented, say scientists, with 10 times more observations and 10 times better accuracy than the previous global survey in the 1970s.

“This research presents the first complete synthesis of modern global ocean inorganic carbon measurements,” said James Yoder, director of NSF’s ocean sciences division. “The results are among the most intriguing yet from the WOCE and JGOFS programs. These new measurements, when coupled with how much anthropogenic carbon dioxide is known to accumulate in the atmosphere, show that the ocean and atmosphere are the two primary ‘sinks’ [holding tanks] of this carbon dioxide since the beginning of the industrial revolution. The land is the ‘source.’”

But that ocean “sink” may be changing, the studies conclude. “Feedbacks between the ocean and atmosphere involving air-sea exchange, ocean circulation and ocean biological processes need to be better understood,” said Yoder.

Analysis of CO2 levels in ice cores have shown scientists that for the 400,000 years before the industrial revolution began in the 1800s, atmospheric CO2 concentrations remained between 200 and 280 parts per million. Today CO2 levels are reaching 380 parts per million in the atmosphere. "If the ocean had not removed 118 billion metric tons of anthropogenic carbon between 1800 and 1994, the CO2 level in the atmosphere would be about 55 parts per million greater than currently observed," said Sabine.

"Because CO2 is an acid gas, the surface ocean pH is dropping," said Richard Feely, a marine chemist at PMEL, and lead author of the companion paper. If current scenarios are realized, surface ocean pH could drop lower than it has been for more than five million years, he said.

Feely and colleagues describe two major impacts of the oceanic uptake of anthropogenic CO2: They demonstrate that a substantial amount of the calcium carbonate, found in shells of marine animals living in surface waters, dissolves in the upper ocean. They then summarize the available evidence on the response of marine calcifying organisms to elevated CO2.

Feely noted that scientists have seen a reduced ability to produce protective calcium carbonate shells in many species of marine organisms at high CO2 levels, including corals and plankton, drifting plants and animals on which other marine life feeds.

"Based on our present knowledge, it appears that as seawater CO2 levels rise the skeletal growth rates of calcareous plankton will be reduced as a result of the effects of CO2 on calcification," said Victoria Fabry, a biologist at California State University at San Marcos and a paper co-author. Recent studies have shown that calcification rates can drop by as much as 25 to 45 percent at CO2 levels equivalent to atmospheric concentrations of 700 to 800 parts per million. Those levels will be reached by the end of this century if fossil fuel consumption continues at projected levels.

The scientists note that the dissolving calcium carbonate shells also partially act to neutralize CO2, thus allowing the ocean to take up more carbon dioxide from the atmosphere. However, the effects of decreased calcification in microscopic algae and animals could alter marine food webs and, combined with other changes in salinity, temperature and nutrients, could substantially alter the diversity and productivity of the oceans.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: “subscribe nsfnews John Smith”)

| newswise
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>