Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migrating Birds Offer Insight Into Sleep

15.07.2004


A newly published study by a University of Wisconsin research team points the way to solving two of life’s seemingly eternal but unrelated mysteries: how birds that migrate thousands of miles every year accomplish the feat on very little sleep and what that ability means for humans who are seriously sleep-deprived or face significant sleep problems.

The study, published online in the July 13 issue of PloS (Public Library of Science) Biology, found that a group of sparrows studied in the laboratory dramatically reduced how long they slept during the time they would ordinarily be migrating. But they were nonetheless able to function and perform normally despite their sleep deprivation. During times when the birds were not migrating, however, sleep deprivation appeared to impair their performance - similar to what happens to sleep-deprived humans.

If researchers ascertain how the birds do so well on so little sleep during migration, the finding could benefit people who need to stay awake and function at a high level for long periods of time, as well as those who suffer from sleep disorders of various kinds. In addition, sleep in the migrating birds was similar to sleep changes that typically occur in humans with depression or bipolar disorder.



"We already know from human studies that people with severe depression and mania show characteristic changes in their sleep patterns, such as having insomnia and entering REM sleep (the dream stage) too quickly after falling asleep," says Ruth Benca, professor of psychiatry at UW Medical School and principal investigator of the study. "Finding this same pattern in the birds offers us an intriguing model for studying mechanisms for seasonal mood disorders, such as bipolar illness."

Benca and her colleagues studied captive white-crowned sparrows, songbirds that normally migrate at night between Alaska and Southern California twice a year. When in captivity in laboratory cages during periods when they would normally be migrating, the birds become active and restless at night, moving around and flapping their wings.

Brain sensors measure their sleep patterns continuously during migratory and non-migratory periods. During "migrating" times, they slept about one-third as much as usual and moved more quickly into REM sleep, marked by rapid eye movements. At night, when the birds were active, the brain recordings showed they were fully awake, and they did not appear to make up their lost nocturnal sleep with increased napping during the day.

Cognitive tests showed that, during the migration periods, the birds performed normally -- or even improved their ability to learn -- on little sleep; but during other times, sleep deprivation hurt their performance. The researchers theorize that migrating songbirds have developed the ability to apparently reduce their need for sleep temporarily, without suffering the consequences of sleep deprivation. While the researchers do not know how the birds do what they do, they are convinced that the birds’ behavior sheds light on sleep processes in general and on some human disorders as well.

The Wisconsin researchers are also affiliated with the UW HealthEmotions Research Institute, created to study the scientific basis of emotion and health.

| newswise
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>