Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migrating Birds Offer Insight Into Sleep

15.07.2004


A newly published study by a University of Wisconsin research team points the way to solving two of life’s seemingly eternal but unrelated mysteries: how birds that migrate thousands of miles every year accomplish the feat on very little sleep and what that ability means for humans who are seriously sleep-deprived or face significant sleep problems.

The study, published online in the July 13 issue of PloS (Public Library of Science) Biology, found that a group of sparrows studied in the laboratory dramatically reduced how long they slept during the time they would ordinarily be migrating. But they were nonetheless able to function and perform normally despite their sleep deprivation. During times when the birds were not migrating, however, sleep deprivation appeared to impair their performance - similar to what happens to sleep-deprived humans.

If researchers ascertain how the birds do so well on so little sleep during migration, the finding could benefit people who need to stay awake and function at a high level for long periods of time, as well as those who suffer from sleep disorders of various kinds. In addition, sleep in the migrating birds was similar to sleep changes that typically occur in humans with depression or bipolar disorder.



"We already know from human studies that people with severe depression and mania show characteristic changes in their sleep patterns, such as having insomnia and entering REM sleep (the dream stage) too quickly after falling asleep," says Ruth Benca, professor of psychiatry at UW Medical School and principal investigator of the study. "Finding this same pattern in the birds offers us an intriguing model for studying mechanisms for seasonal mood disorders, such as bipolar illness."

Benca and her colleagues studied captive white-crowned sparrows, songbirds that normally migrate at night between Alaska and Southern California twice a year. When in captivity in laboratory cages during periods when they would normally be migrating, the birds become active and restless at night, moving around and flapping their wings.

Brain sensors measure their sleep patterns continuously during migratory and non-migratory periods. During "migrating" times, they slept about one-third as much as usual and moved more quickly into REM sleep, marked by rapid eye movements. At night, when the birds were active, the brain recordings showed they were fully awake, and they did not appear to make up their lost nocturnal sleep with increased napping during the day.

Cognitive tests showed that, during the migration periods, the birds performed normally -- or even improved their ability to learn -- on little sleep; but during other times, sleep deprivation hurt their performance. The researchers theorize that migrating songbirds have developed the ability to apparently reduce their need for sleep temporarily, without suffering the consequences of sleep deprivation. While the researchers do not know how the birds do what they do, they are convinced that the birds’ behavior sheds light on sleep processes in general and on some human disorders as well.

The Wisconsin researchers are also affiliated with the UW HealthEmotions Research Institute, created to study the scientific basis of emotion and health.

| newswise
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>