Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migrating Birds Offer Insight Into Sleep

15.07.2004


A newly published study by a University of Wisconsin research team points the way to solving two of life’s seemingly eternal but unrelated mysteries: how birds that migrate thousands of miles every year accomplish the feat on very little sleep and what that ability means for humans who are seriously sleep-deprived or face significant sleep problems.

The study, published online in the July 13 issue of PloS (Public Library of Science) Biology, found that a group of sparrows studied in the laboratory dramatically reduced how long they slept during the time they would ordinarily be migrating. But they were nonetheless able to function and perform normally despite their sleep deprivation. During times when the birds were not migrating, however, sleep deprivation appeared to impair their performance - similar to what happens to sleep-deprived humans.

If researchers ascertain how the birds do so well on so little sleep during migration, the finding could benefit people who need to stay awake and function at a high level for long periods of time, as well as those who suffer from sleep disorders of various kinds. In addition, sleep in the migrating birds was similar to sleep changes that typically occur in humans with depression or bipolar disorder.



"We already know from human studies that people with severe depression and mania show characteristic changes in their sleep patterns, such as having insomnia and entering REM sleep (the dream stage) too quickly after falling asleep," says Ruth Benca, professor of psychiatry at UW Medical School and principal investigator of the study. "Finding this same pattern in the birds offers us an intriguing model for studying mechanisms for seasonal mood disorders, such as bipolar illness."

Benca and her colleagues studied captive white-crowned sparrows, songbirds that normally migrate at night between Alaska and Southern California twice a year. When in captivity in laboratory cages during periods when they would normally be migrating, the birds become active and restless at night, moving around and flapping their wings.

Brain sensors measure their sleep patterns continuously during migratory and non-migratory periods. During "migrating" times, they slept about one-third as much as usual and moved more quickly into REM sleep, marked by rapid eye movements. At night, when the birds were active, the brain recordings showed they were fully awake, and they did not appear to make up their lost nocturnal sleep with increased napping during the day.

Cognitive tests showed that, during the migration periods, the birds performed normally -- or even improved their ability to learn -- on little sleep; but during other times, sleep deprivation hurt their performance. The researchers theorize that migrating songbirds have developed the ability to apparently reduce their need for sleep temporarily, without suffering the consequences of sleep deprivation. While the researchers do not know how the birds do what they do, they are convinced that the birds’ behavior sheds light on sleep processes in general and on some human disorders as well.

The Wisconsin researchers are also affiliated with the UW HealthEmotions Research Institute, created to study the scientific basis of emotion and health.

| newswise
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>