Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migrating Birds Offer Insight Into Sleep

15.07.2004


A newly published study by a University of Wisconsin research team points the way to solving two of life’s seemingly eternal but unrelated mysteries: how birds that migrate thousands of miles every year accomplish the feat on very little sleep and what that ability means for humans who are seriously sleep-deprived or face significant sleep problems.

The study, published online in the July 13 issue of PloS (Public Library of Science) Biology, found that a group of sparrows studied in the laboratory dramatically reduced how long they slept during the time they would ordinarily be migrating. But they were nonetheless able to function and perform normally despite their sleep deprivation. During times when the birds were not migrating, however, sleep deprivation appeared to impair their performance - similar to what happens to sleep-deprived humans.

If researchers ascertain how the birds do so well on so little sleep during migration, the finding could benefit people who need to stay awake and function at a high level for long periods of time, as well as those who suffer from sleep disorders of various kinds. In addition, sleep in the migrating birds was similar to sleep changes that typically occur in humans with depression or bipolar disorder.



"We already know from human studies that people with severe depression and mania show characteristic changes in their sleep patterns, such as having insomnia and entering REM sleep (the dream stage) too quickly after falling asleep," says Ruth Benca, professor of psychiatry at UW Medical School and principal investigator of the study. "Finding this same pattern in the birds offers us an intriguing model for studying mechanisms for seasonal mood disorders, such as bipolar illness."

Benca and her colleagues studied captive white-crowned sparrows, songbirds that normally migrate at night between Alaska and Southern California twice a year. When in captivity in laboratory cages during periods when they would normally be migrating, the birds become active and restless at night, moving around and flapping their wings.

Brain sensors measure their sleep patterns continuously during migratory and non-migratory periods. During "migrating" times, they slept about one-third as much as usual and moved more quickly into REM sleep, marked by rapid eye movements. At night, when the birds were active, the brain recordings showed they were fully awake, and they did not appear to make up their lost nocturnal sleep with increased napping during the day.

Cognitive tests showed that, during the migration periods, the birds performed normally -- or even improved their ability to learn -- on little sleep; but during other times, sleep deprivation hurt their performance. The researchers theorize that migrating songbirds have developed the ability to apparently reduce their need for sleep temporarily, without suffering the consequences of sleep deprivation. While the researchers do not know how the birds do what they do, they are convinced that the birds’ behavior sheds light on sleep processes in general and on some human disorders as well.

The Wisconsin researchers are also affiliated with the UW HealthEmotions Research Institute, created to study the scientific basis of emotion and health.

| newswise
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>