Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genital pain linked to increased pain sensitivity throughout the body

13.07.2004


Study suggests women with vulvodynia process pain differently



Women who experience pain in the genital area have often been told it’s all in their head. New research shows it may well be in the shins, arms and thumbs. Women with a condition called vulvodynia process pain differently, and these women are more sensitive to pain at other points in their body, researchers at the University of Michigan Health System found. Results of their study appear in the July issue of the journal Obstetrics and Gynecology.

The researchers tested 17 women with vulvodynia and 23 similar women without pain at 23 sites throughout the vulva and at the deltoid muscle, the shin and the thumbnail to assess pain tolerance. They found the women with vulvodynia had lower tolerance at all sites than the women without vulvodynia.


"Vulvodynia used to be considered a psychological problem or a sexual disorder, and was not treated as a medical problem. Now we know vulvodynia is likely a neuropathic disorder in which the nerves in the area are hypersensitive. We found women with vulvodynia were hypersensitive at the vulva, not only in areas that were clinically tender, but in surrounding areas as well, and at areas not thought to be tender at all – the deltoid, shins and thumb. This study shows there are neurological differences that are not psychosomatic," says study author Barbara D. Reed, M.D., professor of family medicine at the U-M Medical School.

Vulvodynia causes chronic and potentially severe pain at the outer genital region, or vulva. Currently, few doctors are familiar with vulvar pain disorders, and many women with intense pain are misdiagnosed for years with chronic yeast infections or psychological problems. Women with more mild pain or whose pain comes and goes often think some degree of pain in that area is normal and don’t tell their doctors about it.

In this study, the researchers used a specially designed air-spring device that attaches to a cotton swab to apply a range of pressure to the vulva and nearby areas. This device, a vulvodolorimeter, was designed by the researchers for this study so that varying pressures could be applied at different angles. The Q-tip test used to diagnose vulvodynia did not cause pressure severe enough at the thighs for any woman to rate as painful, but the vulvodolorimeter allowed researchers to apply enough pressure to determine a pain threshold for most women.

The vulvodolorimeter’s pressure started at 0 grams (just touching) and increased at intervals of 0.2 kilograms per second up to 1.5 kilograms. The pain threshold was when a participant first said the pressure was painful.

A similar test was used at the shin, the deltoid and the thumbnail – areas that are not typically trigger points or tender points used in diagnosing various pain syndromes. These neutral points have been shown in previous studies to accurately reflect a person’s overall sensitivity to pressure pain. In these regions, pressure was increased 1 kilogram per second up to 10 kilograms. That kind of steady pressure, about 22 pounds, is about the equivalent of one and a half bowling balls resting on your thumb.

Pain thresholds for women with vulvodynia were significantly lower at all 23 sites throughout the vulvar region and at the thumb, deltoid and shin.

"The women with vulvodynia did not realize that their peripheral sensitivity was any different from other women. Only with the systematic testing of a number of pressures could we determine that they had significantly more sensitivity to pressure than did women without vulvodynia," Reed says, noting that this sensitivity did not seem to impact the women’s lives.

Overall increased pain sensitivity has been linked to other pain syndromes such as tension headaches, temporomandibular disorder (TMJ) and low back pain, suggesting a generalized and central underlying cause. The researchers suggest the local irritation in vulvodynia may cause neurological changes that alter the body’s central pain processing, resulting in hypersensitivity to pain throughout the body. Another possibility is that these women have widespread tenderness that predisposes them to vulvodynia.

The idea of a central cause of the pain suggests treatment should be aimed at the entire body, not just the vulvar region – for example, antidepressants, aerobic exercise or cognitive behavioral therapy.

The researchers have applied for a grant to further study sensory processing among women with vulvodynia, including their responses to heat or cold and their brain activity.

"This improved understanding of the neuropathic changes present in women with vulvodynia will allow us to better design studies to treat and manage this disorder," Reed says. "It will also provide women with vulvodynia the information they need to better understand what is happening in their nervous system, and to know that this is an authentic, treatable disorder."

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>