Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genital pain linked to increased pain sensitivity throughout the body

13.07.2004


Study suggests women with vulvodynia process pain differently



Women who experience pain in the genital area have often been told it’s all in their head. New research shows it may well be in the shins, arms and thumbs. Women with a condition called vulvodynia process pain differently, and these women are more sensitive to pain at other points in their body, researchers at the University of Michigan Health System found. Results of their study appear in the July issue of the journal Obstetrics and Gynecology.

The researchers tested 17 women with vulvodynia and 23 similar women without pain at 23 sites throughout the vulva and at the deltoid muscle, the shin and the thumbnail to assess pain tolerance. They found the women with vulvodynia had lower tolerance at all sites than the women without vulvodynia.


"Vulvodynia used to be considered a psychological problem or a sexual disorder, and was not treated as a medical problem. Now we know vulvodynia is likely a neuropathic disorder in which the nerves in the area are hypersensitive. We found women with vulvodynia were hypersensitive at the vulva, not only in areas that were clinically tender, but in surrounding areas as well, and at areas not thought to be tender at all – the deltoid, shins and thumb. This study shows there are neurological differences that are not psychosomatic," says study author Barbara D. Reed, M.D., professor of family medicine at the U-M Medical School.

Vulvodynia causes chronic and potentially severe pain at the outer genital region, or vulva. Currently, few doctors are familiar with vulvar pain disorders, and many women with intense pain are misdiagnosed for years with chronic yeast infections or psychological problems. Women with more mild pain or whose pain comes and goes often think some degree of pain in that area is normal and don’t tell their doctors about it.

In this study, the researchers used a specially designed air-spring device that attaches to a cotton swab to apply a range of pressure to the vulva and nearby areas. This device, a vulvodolorimeter, was designed by the researchers for this study so that varying pressures could be applied at different angles. The Q-tip test used to diagnose vulvodynia did not cause pressure severe enough at the thighs for any woman to rate as painful, but the vulvodolorimeter allowed researchers to apply enough pressure to determine a pain threshold for most women.

The vulvodolorimeter’s pressure started at 0 grams (just touching) and increased at intervals of 0.2 kilograms per second up to 1.5 kilograms. The pain threshold was when a participant first said the pressure was painful.

A similar test was used at the shin, the deltoid and the thumbnail – areas that are not typically trigger points or tender points used in diagnosing various pain syndromes. These neutral points have been shown in previous studies to accurately reflect a person’s overall sensitivity to pressure pain. In these regions, pressure was increased 1 kilogram per second up to 10 kilograms. That kind of steady pressure, about 22 pounds, is about the equivalent of one and a half bowling balls resting on your thumb.

Pain thresholds for women with vulvodynia were significantly lower at all 23 sites throughout the vulvar region and at the thumb, deltoid and shin.

"The women with vulvodynia did not realize that their peripheral sensitivity was any different from other women. Only with the systematic testing of a number of pressures could we determine that they had significantly more sensitivity to pressure than did women without vulvodynia," Reed says, noting that this sensitivity did not seem to impact the women’s lives.

Overall increased pain sensitivity has been linked to other pain syndromes such as tension headaches, temporomandibular disorder (TMJ) and low back pain, suggesting a generalized and central underlying cause. The researchers suggest the local irritation in vulvodynia may cause neurological changes that alter the body’s central pain processing, resulting in hypersensitivity to pain throughout the body. Another possibility is that these women have widespread tenderness that predisposes them to vulvodynia.

The idea of a central cause of the pain suggests treatment should be aimed at the entire body, not just the vulvar region – for example, antidepressants, aerobic exercise or cognitive behavioral therapy.

The researchers have applied for a grant to further study sensory processing among women with vulvodynia, including their responses to heat or cold and their brain activity.

"This improved understanding of the neuropathic changes present in women with vulvodynia will allow us to better design studies to treat and manage this disorder," Reed says. "It will also provide women with vulvodynia the information they need to better understand what is happening in their nervous system, and to know that this is an authentic, treatable disorder."

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>