Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triple-vaccine strategy stimulates strong HIV-specific immune response in monkeys

09.07.2004


Researchers at The Wistar Institute and the University of Pennsylvania report success in monkeys of an innovative triple-vaccine strategy aimed at creating an effective anti-HIV vaccine regimen. In a test of the new approach, the scientists sought to maximize the immune response to a truncated HIV gene called Gag and succeeded in dramatically stimulating the production of CD8+ T cells responsive to Gag. Many scientists believe that CD8+ T cells will be an important key to creating an effective HIV vaccine.

"For a variety of reasons, it may not be possible to create a vaccine that generates antibodies able to neutralize HIV," says Hildegund C.J. Ertl, M.D., professor and immunology program leader at Wistar and senior author on the report published in the July issue of the Journal of Virology. "The next best thing may be to develop a vaccine that stimulates the production of anti-HIV CD8+ T cells, which have been shown in other studies to reduce viral load, although they do not prevent infection. The new vaccine regimen we tested induced unprecedented levels of CD8+ T cells in monkeys."

The experimental vaccines developed by Ertl and her colleagues take advantage of sophisticated bioengineering technologies and the special characteristics of a class of viruses called adenoviruses to create a series of three vaccines that, when given in sequence, build on each other to generate a stronger immune response than might otherwise be possible.



Many current vaccine development programs rely on human adenoviruses engineered to include elements from disease-causing agents, in part because adenoviruses are relatively easy to manipulate in the laboratory and readily enter a wide variety of cells, including important cells of the immune system, to stimulate a vigorous, long-lasting immune response.

A number of these vaccines based on common strains of human adenoviruses, including some against HIV, have returned positive results in early clinical trials. An unaddressed problem with this vaccine-development approach, however, is that many people are exposed to adenoviruses in childhood and carry neutralizing antibodies against the viruses that would interfere with the effectiveness of any vaccine based on them. About 45 percent of adults in the United States, for example, have pre-existing immunity to the most prevalent strains of adenovirus, and similar or higher levels have been reported in other parts of the world.

To circumvent this potential difficulty, the researchers at The Wistar Institute and the University of Pennsylvania developed a series of vaccine vectors based on chimpanzee adenovirus strains, which possess the immunological strengths of human adenoviruses without their drawbacks. Previously published proof-of-principle studies in mice showed that the new vectors were able to avoid the problem of pre-existing immunity.

In the current study, the scientists created three vaccines, each with a different adenovirus as a backbone but all containing the same truncated HIV gene, Gag. Two of the vaccines were based on chimpanzee adenoviruses, and the third was based on a human adenovirus. The vaccines were administered to two groups of four rhesus macaques each. One group received the human adenovirus vaccine first, followed by the two chimpanzee adenovirus vaccines. The other group received one of the chimpanzee adenovirus vaccines first, followed by the other chimpanzee adenovirus vaccine and then the human adenovirus vaccine.

Both triple immunization regimens sparked high frequencies of CD8+ T cells against Gag that remained remarkably stable over time, demonstrating the potential of the new strategy. For eventual clinical use, vaccines incorporating more elements of HIV would be needed to elicit sufficiently broad T-cell responses to be fully effective.

A unique advantage of the triple-vaccine approach tested by the researchers is that it avoids generating pre-existing immunity to the vaccine backbone, which is new to the immune system at each stage of the regimen. The immune system does respond with increasing vigor, however, to the repeating Gag element of the three vaccines.

In addition to Ertl, the other Wistar-based authors on the Journal of Virology study are first authors Arturo Reyes-Sandoval, Ph.D., also affiliated with Instituto Politecnico Nacional in Mexico City, Mexico, and Julie C. Fitzgerald, both of whom contributed equally to the work, as well as Zhi Quan Xiang, M.D., and Yan Li. The University of Pennsylvania co-authors include James M. Wilson, M.D., Ph.D., professor of medicine and medical genetics, Rebecca L. Grant, D.V.M., Soumitra Roy, M.D., and Guangping Gao, Ph.D.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>