Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triple-vaccine strategy stimulates strong HIV-specific immune response in monkeys

09.07.2004


Researchers at The Wistar Institute and the University of Pennsylvania report success in monkeys of an innovative triple-vaccine strategy aimed at creating an effective anti-HIV vaccine regimen. In a test of the new approach, the scientists sought to maximize the immune response to a truncated HIV gene called Gag and succeeded in dramatically stimulating the production of CD8+ T cells responsive to Gag. Many scientists believe that CD8+ T cells will be an important key to creating an effective HIV vaccine.

"For a variety of reasons, it may not be possible to create a vaccine that generates antibodies able to neutralize HIV," says Hildegund C.J. Ertl, M.D., professor and immunology program leader at Wistar and senior author on the report published in the July issue of the Journal of Virology. "The next best thing may be to develop a vaccine that stimulates the production of anti-HIV CD8+ T cells, which have been shown in other studies to reduce viral load, although they do not prevent infection. The new vaccine regimen we tested induced unprecedented levels of CD8+ T cells in monkeys."

The experimental vaccines developed by Ertl and her colleagues take advantage of sophisticated bioengineering technologies and the special characteristics of a class of viruses called adenoviruses to create a series of three vaccines that, when given in sequence, build on each other to generate a stronger immune response than might otherwise be possible.



Many current vaccine development programs rely on human adenoviruses engineered to include elements from disease-causing agents, in part because adenoviruses are relatively easy to manipulate in the laboratory and readily enter a wide variety of cells, including important cells of the immune system, to stimulate a vigorous, long-lasting immune response.

A number of these vaccines based on common strains of human adenoviruses, including some against HIV, have returned positive results in early clinical trials. An unaddressed problem with this vaccine-development approach, however, is that many people are exposed to adenoviruses in childhood and carry neutralizing antibodies against the viruses that would interfere with the effectiveness of any vaccine based on them. About 45 percent of adults in the United States, for example, have pre-existing immunity to the most prevalent strains of adenovirus, and similar or higher levels have been reported in other parts of the world.

To circumvent this potential difficulty, the researchers at The Wistar Institute and the University of Pennsylvania developed a series of vaccine vectors based on chimpanzee adenovirus strains, which possess the immunological strengths of human adenoviruses without their drawbacks. Previously published proof-of-principle studies in mice showed that the new vectors were able to avoid the problem of pre-existing immunity.

In the current study, the scientists created three vaccines, each with a different adenovirus as a backbone but all containing the same truncated HIV gene, Gag. Two of the vaccines were based on chimpanzee adenoviruses, and the third was based on a human adenovirus. The vaccines were administered to two groups of four rhesus macaques each. One group received the human adenovirus vaccine first, followed by the two chimpanzee adenovirus vaccines. The other group received one of the chimpanzee adenovirus vaccines first, followed by the other chimpanzee adenovirus vaccine and then the human adenovirus vaccine.

Both triple immunization regimens sparked high frequencies of CD8+ T cells against Gag that remained remarkably stable over time, demonstrating the potential of the new strategy. For eventual clinical use, vaccines incorporating more elements of HIV would be needed to elicit sufficiently broad T-cell responses to be fully effective.

A unique advantage of the triple-vaccine approach tested by the researchers is that it avoids generating pre-existing immunity to the vaccine backbone, which is new to the immune system at each stage of the regimen. The immune system does respond with increasing vigor, however, to the repeating Gag element of the three vaccines.

In addition to Ertl, the other Wistar-based authors on the Journal of Virology study are first authors Arturo Reyes-Sandoval, Ph.D., also affiliated with Instituto Politecnico Nacional in Mexico City, Mexico, and Julie C. Fitzgerald, both of whom contributed equally to the work, as well as Zhi Quan Xiang, M.D., and Yan Li. The University of Pennsylvania co-authors include James M. Wilson, M.D., Ph.D., professor of medicine and medical genetics, Rebecca L. Grant, D.V.M., Soumitra Roy, M.D., and Guangping Gao, Ph.D.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>