Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Cleaning Units Ineffective in Removing Chemical Pollutants from the Air

08.07.2004


Study performed through Syracuse Center of Excellence in Environmental and Energy Systems calls for an established test procedure to evaluate the effectiveness of VOC removal

A new study conducted through the Center of Excellence in Environmental and Energy Systems (CoE) to evaluate the performance of room air cleaners has found that no single air-cleaning unit effectively removes all volatile organic compounds (VOCs) from the air and underscores the need to establish standards, test procedures and better consumer awareness.

While many air-cleaning devices have been rated for smoke and particulate removal efficiencies, there is no “silver bullet’’ air cleaning unit or technology type that effectively removes the full range of hundreds of VOCs that are emitted from a variety of sources, including many common cleaning products, building materials, furnishings and office equipment. Some VOCs have been linked to cancer and other health problems. The study suggests that existing air-cleaning


technologies offer a wide range of effectiveness, and provides the groundwork for developing an established test procedure for evaluating the effectiveness of air cleaners for removal of VOCs.

Jianshun S. Zhang, associate professor in the L.C. Smith College of Engineering and Computer Science at Syracuse University, led research efforts for the study. Zhang is a recognized authority on indoor air quality and emissions of VOCs from building materials. “This study was designed to evaluate how well existing off-the-shelf technologies remove VOCs from indoor air,” Zhang says. “Air purification is one of the key approaches for improving indoor air quality, together with controlling sources of contaminants and ventilating with clean outside air. However, there is ample room for improvements in existing products in order to achieve the full potential of air purification technologies.”

The study, performed in the Building Energy and Environmental Systems (BEES) Laboratory at Syracuse University, evaluated the performance of 15 different air cleaners—12 portable units and three in-duct devices—that advertised that they removed chemical pollutants, such as VOCs and odors. Thirteen of the cleaners are commercially available and two are prototype systems.

As there are no existing test methods for evaluating VOC removal effectiveness, Zhang and his fellow researchers developed a test protocol. A “cocktail” of 16 VOCs was introduced into the air in a state-of-the-art, room-sized stainless steel chamber in the BEES laboratory. The levels of each contaminant were measured over a 12-hour period during which the air cleaner was operated. VOCs in the test “cocktail” included formaldehyde, toluene, perchlorethylene and methyl ethyl ketone, each of which is regarded by the U.S. Environmental Protection Agency as a “hazardous air pollutant” and all of which are commonly found in indoor air.

The researchers found that currently available air cleaners employ a range of technologies, including sorption filtration, photocatalytic oxidation, ozone oxidation and air ionization. A prototype air cleaner that uses a live plant as an integral element was also tested. Each technology has fundamental chemical and physical processes that determine its effectiveness at removing specific VOCs. None of the air cleaners tested was effective in removing all 16 VOCs in the test “cocktail.” Among the different technologies, sorption filtration using activated carbon or other materials was found to be more effective than other approaches in currently available air cleaners.

“The study shows that the performance of individual air cleaners varies widely, and consumers who wish to remove specific VOCs from the indoor air must carefully evaluate multiple factors, including underlying technologies used in a particular device,” says Edward Bogucz, executive director of the Syracuse CoE. “We have laid the groundwork to develop an established test procedure for evaluating the effectiveness of air cleaners for the removal of VOCs.”

The study also provides the basis for follow-up work with the manufacturers to improve the effectiveness of their products, including the use of multiple technologies and/or refinements in the designs. Within the Syracuse CoE, the New York Indoor Environmental Quality (NYIEQ) Center leads efforts to transfer research results to companies for application in the development of new products.

“We will communicate the results of this study to our industrial partners, so that they can develop new products that will improve human health and productivity,” says John J. Vasselli, executive director of the NYIEQ Center. “We also will communicate the results of the study to the public, so that consumers can be better informed about the capabilities of existing products.”

The study was performed by a collaborative team associated with the Syracuse CoE, including efforts through the Environmental Quality Systems Strategically Targeted Academic Research (STAR) Center, the NYIEQ Center and Niagara Mohawk-A National Grid Company. The New York State Energy Research and Development Authority (NYSERDA) and the New York State Center for Advanced Technology in Computer Applications and Software Engineering (CASE Center) at Syracuse University also provided funding for the project.

| newswise
Further information:
http://www.syr.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>