Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Macrophages, not stem cells, correct liver disease by fusion


OHSU study flies in face of belief that plasticity causes stem cells to transform

An Oregon Health & Science University study is defying a long-accepted assertion among many scientists that stem cells repair diseased tissue by transforming into other cell types in a process called plasticity.

The first study from OHSU’s new Oregon Stem Cell Center, published in the current issue of the journal Nature Medicine, found that mature macrophages derived from bone marrow stem cells, and not bone marrow stem cells themselves, are what fuse with diseased liver cells, ultimately curing a genetic liver disease.

"The most important discovery is you don’t need to transplant stem cells at all," said study co-author Markus Grompe, M.D., professor of molecular and medical genetics, and pediatrics, OHSU School of Medicine, and director of the Oregon Stem Cell Center. "If you transplant only macrophages, you’ll get liver cells that correct liver disease in mice."

Holger Willenbring, M.D., postdoctoral fellow of molecular and medical genetics, and the study’s lead author, called fusion between macrophages and hepatocytes, the cells in the liver that provide the typical functions of this organ, "a rare physiological, but potentially therapeutically exploitable, phenomenon."

"Macrophages are known to fuse with themselves," Holger said. "Therefore, it is not absolutely surprising that they can fuse with other cells as well, especially, since macrophages physiologically reside in the liver and comprise a substantial fraction of the liver cells.

Usually, they participate in resolving inflammation, taking care of debris and producing factors that help the liver to function. In addition, they provide a link between the bone marrow compartment and highly specified organ cells, and this is new and exciting because of therapeutic implications."

The findings are the latest in a series of discoveries by Grompe’s laboratory since 2000, when it first showed blood-forming stem cells derived from bone marrow, called hematopoietic stem cells, can cure liver disease in mice. It later found that the liver cells were corrected by cell fusion rather than differentiation of the transplanted stem cells.

"Various labs have reported that bone marrow or blood stem cells are like super cells. They can turn into anything – liver, lung, brain, muscle," Grompe said. "Our thought was that blood stem cells are really there to repair all tissues, and we showed that you can cure liver disease with blood stem cell transplantation.

"Then we found out that the bone marrow cells were not turning into liver cells directly, but that they were fusing with preexisting liver cells instead. In cell fusion, two distinct cells meld to form a single, new cell. The liver cells were turning the blood cells into their own kind."

In the latest study, macrophages derived from bone marrow stem cells were transplanted into the spleens of mice with the genetic liver disease fumarylacetoacetate hydrolase deficiency, also called hereditary tyrosinemia in humans. Each mouse was injected with 1 million macrophages. The spleen, upstream from the liver, slowly releases the macrophages into the liver, which would otherwise wash cells away in its blood-rich environs. The result was "robust production" of functional hepatocytes..

"This means you can get away with using only macrophages in transplantation," Grompe said. "For bone marrow transplantation, to get a stem cell transplant to work, you need to treat the host with lethal doses of preparative irradiation, which has severe side effects. Here we show this harsh treatment is not necessary for macrophages to turn into useful liver cells."

Willenbring said transplantation of macrophages or their immediate, short-lived progenitors is much more targeted toward treatment of damaged liver tissue than using whole stem cells from which they’re derived.

The discovery "strongly argues against stem cell plasticity because you’re not using stem cells at all," Grompe said. To be sure, his laboratory used macrophages exclusively in the transplantation and "it worked." Macrophages also can more easily be grown in tissue culture than stem cells, and future studies will even look at whether they can be genetically modified before transplantation.

"That’s the future. That’s what we’re trying to do," he said.

As for stem cell plasticity, Grompe said he and his colleagues "just don’t see it," at least in liver cell repopulation.

"That could mean two things: We’re blind, or it doesn’t happen," he said. "I think the burden of proof is now on the people doing that work, to show that what they’re seeing is not fusion."

The study was funded by the National Institutes of Health.

Jonathan Modie | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>