Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightness discrimination in the dog

30.06.2004


Dogs’ ability to discriminate brightness is about half as good as that of humans, according to a study appearing in Volume 4, Issue 3 in the Journal of Vision. In research conducted by scientists from the Veterinary University of Vienna and the University of Memphis, dogs showed a surprising lack of ability to discriminate between grey cards that varied in brightness, says researcher Ulrike Griebel of the University of Memphis.



While a great deal is known about dogs’ visual acuity and the cellular components of their eyes, there is a paucity of information about their ability to discriminate brightness, says Griebel. Furthermore, she notes that there is relatively little information on how well other animals discriminate brightness.

The researchers tested three police dogs--two Belgian shepherds and a German shepherd. The dogs faced a series of pairs of grey squares, which differed in brightness. The task required the dog to determine how much the one square differed in brightness from the other. The correct choice was rewarded with a food treat. The dogs needed a far greater difference in brightness (known as the Weber fraction) than do humans to discriminate between two squares.


For the Belgian shepherds the Weber fraction was 0.27; for the German shepherd it was 0.22. Although the researchers did not test humans in their study, previous studies found that humans need a Weber fraction of 0.14 to be able to discern a brightness difference.

While there has been little research into brightness discrimination in animals, says Griebel, what has been found is surprising. Dogs are arrhythmic animals, meaning they are active during both day and night. Consequently, it would be expected that they would have a high level of brightness discrimination. Brightness would be an important cue for such animals. Like dogs, says Griebel, sea lions, a species of manatee, and the horse--all arrhythmic animals--are quite inferior to humans in the ability to discriminate brightness. Humans are diurnal animals--active primarily during daylight.

Griebel hypothesizes that the relatively poor brightness discrimination ability of these arrhythmic animals represents a compromise. Because their visual systems have to operate under a wide range of light conditions, something has to be given up. She says this idea is an initial supposition, and that more study is needed to arrive at a firmer conclusion. This research helps to show that dogs’ perceptual world is very different from ours, and that we cannot expect the same thing from them that we expect from ourselves.

Karen Schools Colson | EurekAlert!
Further information:
http://www.memphis.edu
http://www.arvo.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>