Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anabolic steroids may improve surgical repair of torn shoulder tendons, study finds

25.06.2004


New research from the University of North Carolina at Chapel Hill indicates that treatment with anabolic steroids may improve surgical repair of massive or recurrent tears of the shoulder’s rotator cuff tendons. Such injuries extend well beyond the world of high-performance athletes, professional and collegiate – often occurring among older weekend athletes, including tennis and golf players. The study, which appears in the June issue of the American Journal of Sports Medicine, was led by Dr. Spero Karas, assistant professor of orthopedic surgery in UNC’s School of Medicine.

Dr. Albert J. Banes, professor of orthopedics and biomedical engineering at UNC, developed a bioengineered tendon that figured prominently in the study’s experiments. Through a company he founded 18 years ago, Banes developed a special tissue plate in which cells in a liquid collagen gel could remodel on their own to form a tissue-like matrix or structure. The structure then could be placed under mechanical load by a computer-driven pressure-controlled system.

In 2002, his laboratory announced it had successfully bioengineered a rhythmically beating experimental model of heart muscle. Anabolic steroids benefit millions of people a year, said Karas, including those with deficiencies in sex hormones and burn victims who need to build up their metabolism to repair musculoskeletal tissue. They also are FDA-approved for treating anemia for their ability to help the body rebuild blood.



As it’s widely known that anabolic steroids can build muscle mass and strength, Karas said he thought these properties might apply to shoulder tissue and that Banes’ bioartificial tendon might provide the appropriate model for testing.

"In this new study, supraspinatus tendon cells were harvested from my patients during rotator cuff surgery, isolated and then sent to Albert’s lab," Karas said. "The cells were then grown in his culture media to coalesce and form this experimental tendon model, the bioartificial tendon."

Prior to applying mechanical strain, the researchers treated some of the developing tissue with the anabolic steroid nandrolone decoanate. The steroid was administered directly into the lab dish via pipette, or dropper.

"We clearly found that when you looked at the bioartificial tendon matrices that were treated with anabolic steroid and then mechanical load or strain, we saw significant increases in their biomechanical properties," Karas said.

"The tendons were smaller, more dense, stronger, more elastic and had better remodeling properties than tissue cells not treated with steroid or placed under strain," he said. "They responded better to the load and formed a more normal appearing tendon, versus a more disorganized matrix we see in the untreated bioartificial tendon."

Thus, said Karas, it appeared that load and anabolic steroid "act synergistically" to improve the characteristics of tendon. Karas said the research had clinical applications, including the possibility of a day when bioartificial tendon matrices might literally help bridge the gap between deficient human tissue and the normal state – that is, to bridge the holes that remain following surgery for large rotator cuff tears.

In the less distant future, the new study’s crucial implications may apply to the post-surgery healing of tendons that have been torn or retracted for a long time, he said.

"Orthopedic surgeons, especially those who specialize in the shoulder, tend to have one vexing dilemma in front of them: There are certain states that make rotator cuff repair extremely difficult, and that would be a tendon that has experienced atrophy and degeneration, that has been torn for a long time. In other words, not a fresh tear.

"With FDA-approved drugs taken at the appropriate dosages for the appropriate occasions, we might be able to modulate tendon-to-bone healing in this postoperative period," he said, adding that the next step is to explore the use of anabolic steroids in the animal model.

Most of these patients are between 50 and 70 years of age and have their athletic years behind them. But many are very active and comprise a much larger demographic in society than the athlete, Karas said.

"And these weekend warriors who play tennis and golf are represented far more in most orthopedic practices than professional or collegiate athletes." Support for the study came from the National Institutes of Health.

Dr. Karas | EurekAlert!
Further information:
http://www.unc.edu
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>