Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Confirms Process Leading To Disorder Causing Male Characteristics In Women

22.06.2004


Ovarian stimulation of male steroids is the culprit behind this disorder.

A woman finds herself with excessive facial hair, obesity, menstrual abnormalities, infertility, and enlarged ovaries may have polycystic ovary syndrome (PCOS), an unfortunate condition thought to be caused by excessive secretion by the ovaries of androgen, a hormone associated with male characteristics. Men and women both have hormones expressing male and female characteristics. Yet, the cause of this excessive secretion of a hormone leading to undesired gender traits remains unclear.

Estimates of incidence of this disorder range around the five percent level if both cessation of ovulation and excess hair growth are used in the definition, but they can range over 10 percent in some select populations. Past research emphasized the relative roles of neuroendocrine abnormalities leading to persistent and excessive secretion of luteinizing hormones (LH), one of two glycoprotein hormones that stimulate the final ripening of the follicles and the secretion of progesterone; and the ovarian actions increased insulin in plasma, a consequence of insulin resistance. Additional evidence suggests that unnatural ovarian production of hormonal steroids is a primary abnormality in PCOS.



Human studies of PCOS have found abnormal ovarian steroid responses to administration of gonadial hormones, specifically potent gonadotropin-releasing hormone (GnRH) agonist or a high dose of human chorionic gonadotropin (hCG). The stimuli cause exaggerated secretion of 17-hydroxyprogesterone (17-OHP) and, to a lesser degree, androstenedione, suggesting abnormal ovarian production of steroids. However, these paradigms involve pharmacological ovarian stimulation and do not reproduce physiological LH pulsatility.

Researchers recently hypothesized that near-physiological LH stimuli would effect greater ovarian secretion of androgens and their precursors in women with PCOS compared to controls. To test this supposition, they employed a paradigm of sequential GnRH-receptor antagonist administration to suppress endogenous LH concentrations, and intermittent (pulse-like) infusions of physiological amounts of recombinant human LH (rhLH) to stimulate ovarian steroidogenesis.

A New Study

The authors of “Exaggerated 17-Hydroxyprogesterone Response to Intravenous Infusions of Recombinant Human LH in Women with Polycystic Ovary Syndrome,” are Christopher R. McCartney, Amy B. Bellows, Melissa B. Gingrich, Yun Hu, William S. Evans, John C. Marshall, and Johannes D. Veldhuis, all from the University of Virginia Health System, Charlottesville, VA. Their findings appear in the June, 2004, edition of the American Journal of Physiology – Endocrinology and Metabolism. The journal is one of 14 published each month by the American Physiological Society (APS) (www.the-aps.org).

Methodology

This study sought to assess ovarian steroid secretion in response to near-physiological gonadotropin stimuli in 12 ovulatory controls and 7 women with PCOS. A gonadotropin-releasing hormone-receptor antagonist (ganirelix, 2 mg subcutaneously) was given to block endogenous LH secretion, followed by dexamethasone (0.75 mg orally) to suppress adrenal androgen secretion. Twelve hours after ganirelix injection, intravenous infusions of recombinant human LH were administered at four-hour intervals with the highest dose last. Plasma LH, 17-hydroxyprogesterone (17-OHP), androstenedione, and testosterone were measured concurrently. LH dose-steroid response relationships (mean sex-steroid concentration versus. mean LH concentration over four post-infusion) were examined for each subject.

Results

The increased 17-OHP responses in PCOS observed in the study may reflect exaggerated acute steroidogenic responses that parallel escalating doses of rhLH. However, an alternative explanation is that the 17-OHP increase in PCOS reflects abrupt (in comparison to normal) rhLH-induced resumption of early steroidogenic steps after temporary removal of physiological LH stimulation.

The findings revealed that leuteinizing hormone dose-ovarian steroid responses were not observed in normal women. Furthermore, acute ovarian steroid responses to rhLH infusions were not commonly apparent when reviewing individual steroid time series. It remains possible that ovarian steroid responses could have occurred after our surveillance had ended. Nonetheless, the observations suggest that ovarian steroidogenesis during the normal follicular phase is influenced by integrated LH stimulation and does not vary acutely to changes in LH pulse mass. This contrasts with acute P responses to endogenous LH pulses during the luteal phase.

Conclusions

The authors conclude that that near-physiological ovarian stimulation via intermittent (pulse-like) rhLH administration produces exaggerated 17-hydroxyprogesterone secretion in patients with PCOS, supporting earlier studies of pharmacological ovarian stimulation. The next step in the key to prevention is to determine the physiological mechanisms leading to this disorder.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>