Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Confirms Process Leading To Disorder Causing Male Characteristics In Women

22.06.2004


Ovarian stimulation of male steroids is the culprit behind this disorder.

A woman finds herself with excessive facial hair, obesity, menstrual abnormalities, infertility, and enlarged ovaries may have polycystic ovary syndrome (PCOS), an unfortunate condition thought to be caused by excessive secretion by the ovaries of androgen, a hormone associated with male characteristics. Men and women both have hormones expressing male and female characteristics. Yet, the cause of this excessive secretion of a hormone leading to undesired gender traits remains unclear.

Estimates of incidence of this disorder range around the five percent level if both cessation of ovulation and excess hair growth are used in the definition, but they can range over 10 percent in some select populations. Past research emphasized the relative roles of neuroendocrine abnormalities leading to persistent and excessive secretion of luteinizing hormones (LH), one of two glycoprotein hormones that stimulate the final ripening of the follicles and the secretion of progesterone; and the ovarian actions increased insulin in plasma, a consequence of insulin resistance. Additional evidence suggests that unnatural ovarian production of hormonal steroids is a primary abnormality in PCOS.



Human studies of PCOS have found abnormal ovarian steroid responses to administration of gonadial hormones, specifically potent gonadotropin-releasing hormone (GnRH) agonist or a high dose of human chorionic gonadotropin (hCG). The stimuli cause exaggerated secretion of 17-hydroxyprogesterone (17-OHP) and, to a lesser degree, androstenedione, suggesting abnormal ovarian production of steroids. However, these paradigms involve pharmacological ovarian stimulation and do not reproduce physiological LH pulsatility.

Researchers recently hypothesized that near-physiological LH stimuli would effect greater ovarian secretion of androgens and their precursors in women with PCOS compared to controls. To test this supposition, they employed a paradigm of sequential GnRH-receptor antagonist administration to suppress endogenous LH concentrations, and intermittent (pulse-like) infusions of physiological amounts of recombinant human LH (rhLH) to stimulate ovarian steroidogenesis.

A New Study

The authors of “Exaggerated 17-Hydroxyprogesterone Response to Intravenous Infusions of Recombinant Human LH in Women with Polycystic Ovary Syndrome,” are Christopher R. McCartney, Amy B. Bellows, Melissa B. Gingrich, Yun Hu, William S. Evans, John C. Marshall, and Johannes D. Veldhuis, all from the University of Virginia Health System, Charlottesville, VA. Their findings appear in the June, 2004, edition of the American Journal of Physiology – Endocrinology and Metabolism. The journal is one of 14 published each month by the American Physiological Society (APS) (www.the-aps.org).

Methodology

This study sought to assess ovarian steroid secretion in response to near-physiological gonadotropin stimuli in 12 ovulatory controls and 7 women with PCOS. A gonadotropin-releasing hormone-receptor antagonist (ganirelix, 2 mg subcutaneously) was given to block endogenous LH secretion, followed by dexamethasone (0.75 mg orally) to suppress adrenal androgen secretion. Twelve hours after ganirelix injection, intravenous infusions of recombinant human LH were administered at four-hour intervals with the highest dose last. Plasma LH, 17-hydroxyprogesterone (17-OHP), androstenedione, and testosterone were measured concurrently. LH dose-steroid response relationships (mean sex-steroid concentration versus. mean LH concentration over four post-infusion) were examined for each subject.

Results

The increased 17-OHP responses in PCOS observed in the study may reflect exaggerated acute steroidogenic responses that parallel escalating doses of rhLH. However, an alternative explanation is that the 17-OHP increase in PCOS reflects abrupt (in comparison to normal) rhLH-induced resumption of early steroidogenic steps after temporary removal of physiological LH stimulation.

The findings revealed that leuteinizing hormone dose-ovarian steroid responses were not observed in normal women. Furthermore, acute ovarian steroid responses to rhLH infusions were not commonly apparent when reviewing individual steroid time series. It remains possible that ovarian steroid responses could have occurred after our surveillance had ended. Nonetheless, the observations suggest that ovarian steroidogenesis during the normal follicular phase is influenced by integrated LH stimulation and does not vary acutely to changes in LH pulse mass. This contrasts with acute P responses to endogenous LH pulses during the luteal phase.

Conclusions

The authors conclude that that near-physiological ovarian stimulation via intermittent (pulse-like) rhLH administration produces exaggerated 17-hydroxyprogesterone secretion in patients with PCOS, supporting earlier studies of pharmacological ovarian stimulation. The next step in the key to prevention is to determine the physiological mechanisms leading to this disorder.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>