Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Confirms Process Leading To Disorder Causing Male Characteristics In Women

22.06.2004


Ovarian stimulation of male steroids is the culprit behind this disorder.

A woman finds herself with excessive facial hair, obesity, menstrual abnormalities, infertility, and enlarged ovaries may have polycystic ovary syndrome (PCOS), an unfortunate condition thought to be caused by excessive secretion by the ovaries of androgen, a hormone associated with male characteristics. Men and women both have hormones expressing male and female characteristics. Yet, the cause of this excessive secretion of a hormone leading to undesired gender traits remains unclear.

Estimates of incidence of this disorder range around the five percent level if both cessation of ovulation and excess hair growth are used in the definition, but they can range over 10 percent in some select populations. Past research emphasized the relative roles of neuroendocrine abnormalities leading to persistent and excessive secretion of luteinizing hormones (LH), one of two glycoprotein hormones that stimulate the final ripening of the follicles and the secretion of progesterone; and the ovarian actions increased insulin in plasma, a consequence of insulin resistance. Additional evidence suggests that unnatural ovarian production of hormonal steroids is a primary abnormality in PCOS.



Human studies of PCOS have found abnormal ovarian steroid responses to administration of gonadial hormones, specifically potent gonadotropin-releasing hormone (GnRH) agonist or a high dose of human chorionic gonadotropin (hCG). The stimuli cause exaggerated secretion of 17-hydroxyprogesterone (17-OHP) and, to a lesser degree, androstenedione, suggesting abnormal ovarian production of steroids. However, these paradigms involve pharmacological ovarian stimulation and do not reproduce physiological LH pulsatility.

Researchers recently hypothesized that near-physiological LH stimuli would effect greater ovarian secretion of androgens and their precursors in women with PCOS compared to controls. To test this supposition, they employed a paradigm of sequential GnRH-receptor antagonist administration to suppress endogenous LH concentrations, and intermittent (pulse-like) infusions of physiological amounts of recombinant human LH (rhLH) to stimulate ovarian steroidogenesis.

A New Study

The authors of “Exaggerated 17-Hydroxyprogesterone Response to Intravenous Infusions of Recombinant Human LH in Women with Polycystic Ovary Syndrome,” are Christopher R. McCartney, Amy B. Bellows, Melissa B. Gingrich, Yun Hu, William S. Evans, John C. Marshall, and Johannes D. Veldhuis, all from the University of Virginia Health System, Charlottesville, VA. Their findings appear in the June, 2004, edition of the American Journal of Physiology – Endocrinology and Metabolism. The journal is one of 14 published each month by the American Physiological Society (APS) (www.the-aps.org).

Methodology

This study sought to assess ovarian steroid secretion in response to near-physiological gonadotropin stimuli in 12 ovulatory controls and 7 women with PCOS. A gonadotropin-releasing hormone-receptor antagonist (ganirelix, 2 mg subcutaneously) was given to block endogenous LH secretion, followed by dexamethasone (0.75 mg orally) to suppress adrenal androgen secretion. Twelve hours after ganirelix injection, intravenous infusions of recombinant human LH were administered at four-hour intervals with the highest dose last. Plasma LH, 17-hydroxyprogesterone (17-OHP), androstenedione, and testosterone were measured concurrently. LH dose-steroid response relationships (mean sex-steroid concentration versus. mean LH concentration over four post-infusion) were examined for each subject.

Results

The increased 17-OHP responses in PCOS observed in the study may reflect exaggerated acute steroidogenic responses that parallel escalating doses of rhLH. However, an alternative explanation is that the 17-OHP increase in PCOS reflects abrupt (in comparison to normal) rhLH-induced resumption of early steroidogenic steps after temporary removal of physiological LH stimulation.

The findings revealed that leuteinizing hormone dose-ovarian steroid responses were not observed in normal women. Furthermore, acute ovarian steroid responses to rhLH infusions were not commonly apparent when reviewing individual steroid time series. It remains possible that ovarian steroid responses could have occurred after our surveillance had ended. Nonetheless, the observations suggest that ovarian steroidogenesis during the normal follicular phase is influenced by integrated LH stimulation and does not vary acutely to changes in LH pulse mass. This contrasts with acute P responses to endogenous LH pulses during the luteal phase.

Conclusions

The authors conclude that that near-physiological ovarian stimulation via intermittent (pulse-like) rhLH administration produces exaggerated 17-hydroxyprogesterone secretion in patients with PCOS, supporting earlier studies of pharmacological ovarian stimulation. The next step in the key to prevention is to determine the physiological mechanisms leading to this disorder.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>