Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer Molecules To Treat Common Diseases Closer To Reality

22.06.2004


By making use of model compounds in drug design, chemists at the University of California, San Diego identified a class of molecules that could lead to treatments for a wide range of diseases, including cancer, arthritis, and heart disease.



Enzymes—protein catalysts—in the body that help break down connective tissue like collagen are important in growth and wound healing, but also play a role in many diseases. For example, these enzymes are overactive in arthritis and are used by cancer cells to migrate through connective tissue and spread. While a number of drugs have been designed to inhibit these enzymes, only one has made it through clinical trials because of a variety of drawbacks.

In a study to be published in the July 14 issue of the Journal of the American Chemical Society, a group of chemists led by Seth Cohen in UCSD’s Division of Physical Sciences has identified a promising set of inhibitors that may lack the drawbacks plaguing the previous generation of such compounds.


“Nearly all the compounds known to inhibit these enzymes are chemically similar,” says Cohen, an assistant professor of chemistry and biochemistry. “But they tend to be toxic, cannot be taken orally, and are rapidly metabolized. We tested 11 new compounds selected for their chemical similarities and some differences to the known inhibitors. Many of the new compounds not only turned out to be excellent inhibitors, they are also less likely to have undesirable side effects. For example, one of the inhibitors we discovered is actually the food additive Maltol, which is used as a flavor enhancer.”

All enzymes have an active site—a pocket with a particular shape and chemical composition, where molecules bind and react. Enzymes that break down connective tissue—matrix metalloproteases or MMPs—have a zinc ion at the active site, which is essential for providing the right chemical environment for a reaction to occur. Compounds that surround and bind to the zinc ion can inhibit the enzyme.

In the classical approach to drug design, chemists use computer programs to predict what compounds are potential inhibitors of an enzyme. This “computational” approach requires knowledge of the chemical groups at the active site of the enzyme and the three-dimensional shape of the active site. But it can be difficult to obtain and crystallize sufficient quantities of the enzyme to use X-ray crystallography—the method chemists employ to take detailed pictures of molecules using X-rays.

“The drug design process is much more challenging for proteins containing metal ions because computational chemistry is not as advanced for this,” says Cohen. “It’s a frontier area of research. But you can overcome the limitations of computational chemistry by using the model compounds to understand how the drug binds to just the metal part. Basically you take out the difficult part by using models.”

Cohen and his colleagues tested the ability of the 11 compounds to inhibit an MMP enzyme in a test tube. They also studied the strength of binding of each of the 11 compounds to a chemical model that they had designed to mimic the way the zinc is bound in the active site of the enzyme. The researchers found that the ability of the compounds to inhibit the enzyme increased as the strength of their binding to the model increased. This is what is expected if the inhibitor is working by binding to the active site of the enzyme, rather than some unknown mechanism.

There are actually 26 MMPs in the human body, so to avoid unwanted side effects, drugs need to be designed that target specific MMPs. Since the active site for each of these MMPs contains a zinc ion, the 11 inhibitors would not target just one MMP. Designing inhibitors that target a single type of MMP requires modifying the way the inhibitor binds to chemical groups of the enzyme unique to that enzyme. Modifying the inhibitors to make them target specific enzymes will be the researchers’ next steps, but according to Cohen, there is a great deal of published work that will help them with this task. Computational chemistry can also help them now that they have figured out the tricky metal-binding part.

“Although the use of models in chemistry is very well established, we are among the first groups to aggressively use model chemistry as a part of drug design,” says Cohen. “So far, our work has been particularly well received in the community of MMP research.”

The other researchers that contributed to this work are David Puerta and Jana Lewis, graduate students in the Cohen lab. The study was supported by UCSD, a Chris and Warren Hellman Faculty Scholar award, and the American Heart Association.

UCSD | newswise
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>