Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Shift Predicts Brain Cancer Grade, Recurrence and Patient Survival

22.06.2004


Study results published in the August issue of the journal Cancer reinforce previous findings that the laminin-8 genes and the resulting protein may be highly valuable targets in the fight against malignant brain tumors.

Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute report that over-expression of laminin-8 can be used as a predictor of a tumor’s grade, its potential for recurrence, and the patient’s length of survival. This follows their earlier findings that laminin-8 is up-regulated in the most aggressive brain tumors, glioblastoma multiforme (GBM), and that the gene promotes the tumor cells’ ability to invade neighboring tissue.

The thin “basement membrane” that lies beneath the surface layer of blood vessels contains proteins called laminins. Fifteen laminins have been identified to date. The Cedars-Sinai researchers found that during tumor progression, laminin-9, which is expressed weakly in normal brain tissue and low-grade glial tumors, switched to laminin-8, and the level of expression of the laminin-8 increased significantly, depending on brain tumor grade.



Gliomas develop from glial cells, which make up the supportive tissue of the brain. Different forms of gliomas are further classified by their specific cells of origin and characteristics. The average survival time for patients with Grade 1 or Grade 2 gliomas is six to eight years. For anaplastic astrocytomas (Grade 3 gliomas), survival time decreases to three years, and for Grade 4 astrocytomas, called glioblastoma multiforme (GBM), survival length typically ranges from 12 to 18 months. GBM cells proliferate uncontrollably, aggressively infiltrating nearby tissue. As a GBM progresses, portions of the tumor often outgrow the blood supply but new blood vessels form. The development of these new vessels, a process called angiogenesis, enables the tumor to grow unchecked.

In this study, Cedars-Sinai researchers, in conjunction with colleagues in Japan, Sweden and Germany, analyzed a variety of gliomas of both high and low grades, as well as normal brain tissue samples. Low-grade astrocytomas and normal brain tissue were found to express very low levels of laminin-9 and virtually no laminin-8. The levels of expression of both variants increased in Grade 3 gliomas, and as gliomas progressed to Grade 4, laminin-8 expression increased significantly and laminin-9 levels tended to decline.

The particular isoform (laminin-8 or laminin-9) predominantly expressed in Grade 4 gliomas appeared to correlate with time to recurrence after tumor-removal surgery. Among patients with high laminin-8 expression, tumors recurred about 4 months after surgery, compared with more than 11 months among patients whose tumors expressed laminin-9 predominantly. Patients with higher levels of laminin-8 also had shorter lengths of survival, averaging about 11 months, compared to 16.7 months when laminin-9 was predominant.

“Historically, the diagnosis of glioblastoma multiforme has come with an extremely poor prognosis, and traditional treatments have had very limited impact on patient survival,” said Keith L. Black, MD, director of the Maxine Dunitz Neurosurgical Institute, Cedars-Sinai’s Division of Neurosurgery and the Comprehensive Brain Tumor Program.

“Only in recent years have we begun to see progress, which is coming from a better understanding of genetic, molecular and immunologic changes that enable these deadly tumors to grow,” said Dr. Black, who holds the Ruth and Lawrence Harvey Chair in Neuroscience at the medical center. “Although a number of genes and proteins have been identified as having altered expression in glial tumors, few have become reliable indicators that can be used to improve diagnosis, prognosis and treatment.”

Julia Y. Ljubimova, MD, PhD, research scientist at the Institute and first author of the Cancer article, said the over-expression of laminin-8 may prove to be one of those important markers. Taken in consideration with other genes known to support tumor growth, it may give clinicians measurable clues for predicting recurrence and survival times of patients with high-grade gliomas.

“The switch from laminin-9 to laminin-8 expression, with its gradual increase from a low level of expression in low-grade tumors to a moderate level of expression in Grade 3 gliomas to a significantly high level of expression in 74 percent of GBMs, may be associated with the development of new tumor-feeding blood vessels, contributing to tumor aggressiveness,” she said. “Therefore, laminin-8 appears to be a promising marker of tumor progression. Perhaps more importantly, we hypothesize that if laminin-8 plays a major role in tumor progression and recurrence, it could be an important target for the development of new therapies.”

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Cedars-Sinai
Further information:
http://www.csmc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>