Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Shift Predicts Brain Cancer Grade, Recurrence and Patient Survival

22.06.2004


Study results published in the August issue of the journal Cancer reinforce previous findings that the laminin-8 genes and the resulting protein may be highly valuable targets in the fight against malignant brain tumors.

Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute report that over-expression of laminin-8 can be used as a predictor of a tumor’s grade, its potential for recurrence, and the patient’s length of survival. This follows their earlier findings that laminin-8 is up-regulated in the most aggressive brain tumors, glioblastoma multiforme (GBM), and that the gene promotes the tumor cells’ ability to invade neighboring tissue.

The thin “basement membrane” that lies beneath the surface layer of blood vessels contains proteins called laminins. Fifteen laminins have been identified to date. The Cedars-Sinai researchers found that during tumor progression, laminin-9, which is expressed weakly in normal brain tissue and low-grade glial tumors, switched to laminin-8, and the level of expression of the laminin-8 increased significantly, depending on brain tumor grade.



Gliomas develop from glial cells, which make up the supportive tissue of the brain. Different forms of gliomas are further classified by their specific cells of origin and characteristics. The average survival time for patients with Grade 1 or Grade 2 gliomas is six to eight years. For anaplastic astrocytomas (Grade 3 gliomas), survival time decreases to three years, and for Grade 4 astrocytomas, called glioblastoma multiforme (GBM), survival length typically ranges from 12 to 18 months. GBM cells proliferate uncontrollably, aggressively infiltrating nearby tissue. As a GBM progresses, portions of the tumor often outgrow the blood supply but new blood vessels form. The development of these new vessels, a process called angiogenesis, enables the tumor to grow unchecked.

In this study, Cedars-Sinai researchers, in conjunction with colleagues in Japan, Sweden and Germany, analyzed a variety of gliomas of both high and low grades, as well as normal brain tissue samples. Low-grade astrocytomas and normal brain tissue were found to express very low levels of laminin-9 and virtually no laminin-8. The levels of expression of both variants increased in Grade 3 gliomas, and as gliomas progressed to Grade 4, laminin-8 expression increased significantly and laminin-9 levels tended to decline.

The particular isoform (laminin-8 or laminin-9) predominantly expressed in Grade 4 gliomas appeared to correlate with time to recurrence after tumor-removal surgery. Among patients with high laminin-8 expression, tumors recurred about 4 months after surgery, compared with more than 11 months among patients whose tumors expressed laminin-9 predominantly. Patients with higher levels of laminin-8 also had shorter lengths of survival, averaging about 11 months, compared to 16.7 months when laminin-9 was predominant.

“Historically, the diagnosis of glioblastoma multiforme has come with an extremely poor prognosis, and traditional treatments have had very limited impact on patient survival,” said Keith L. Black, MD, director of the Maxine Dunitz Neurosurgical Institute, Cedars-Sinai’s Division of Neurosurgery and the Comprehensive Brain Tumor Program.

“Only in recent years have we begun to see progress, which is coming from a better understanding of genetic, molecular and immunologic changes that enable these deadly tumors to grow,” said Dr. Black, who holds the Ruth and Lawrence Harvey Chair in Neuroscience at the medical center. “Although a number of genes and proteins have been identified as having altered expression in glial tumors, few have become reliable indicators that can be used to improve diagnosis, prognosis and treatment.”

Julia Y. Ljubimova, MD, PhD, research scientist at the Institute and first author of the Cancer article, said the over-expression of laminin-8 may prove to be one of those important markers. Taken in consideration with other genes known to support tumor growth, it may give clinicians measurable clues for predicting recurrence and survival times of patients with high-grade gliomas.

“The switch from laminin-9 to laminin-8 expression, with its gradual increase from a low level of expression in low-grade tumors to a moderate level of expression in Grade 3 gliomas to a significantly high level of expression in 74 percent of GBMs, may be associated with the development of new tumor-feeding blood vessels, contributing to tumor aggressiveness,” she said. “Therefore, laminin-8 appears to be a promising marker of tumor progression. Perhaps more importantly, we hypothesize that if laminin-8 plays a major role in tumor progression and recurrence, it could be an important target for the development of new therapies.”

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Cedars-Sinai
Further information:
http://www.csmc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>