Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Shift Predicts Brain Cancer Grade, Recurrence and Patient Survival

22.06.2004


Study results published in the August issue of the journal Cancer reinforce previous findings that the laminin-8 genes and the resulting protein may be highly valuable targets in the fight against malignant brain tumors.

Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute report that over-expression of laminin-8 can be used as a predictor of a tumor’s grade, its potential for recurrence, and the patient’s length of survival. This follows their earlier findings that laminin-8 is up-regulated in the most aggressive brain tumors, glioblastoma multiforme (GBM), and that the gene promotes the tumor cells’ ability to invade neighboring tissue.

The thin “basement membrane” that lies beneath the surface layer of blood vessels contains proteins called laminins. Fifteen laminins have been identified to date. The Cedars-Sinai researchers found that during tumor progression, laminin-9, which is expressed weakly in normal brain tissue and low-grade glial tumors, switched to laminin-8, and the level of expression of the laminin-8 increased significantly, depending on brain tumor grade.



Gliomas develop from glial cells, which make up the supportive tissue of the brain. Different forms of gliomas are further classified by their specific cells of origin and characteristics. The average survival time for patients with Grade 1 or Grade 2 gliomas is six to eight years. For anaplastic astrocytomas (Grade 3 gliomas), survival time decreases to three years, and for Grade 4 astrocytomas, called glioblastoma multiforme (GBM), survival length typically ranges from 12 to 18 months. GBM cells proliferate uncontrollably, aggressively infiltrating nearby tissue. As a GBM progresses, portions of the tumor often outgrow the blood supply but new blood vessels form. The development of these new vessels, a process called angiogenesis, enables the tumor to grow unchecked.

In this study, Cedars-Sinai researchers, in conjunction with colleagues in Japan, Sweden and Germany, analyzed a variety of gliomas of both high and low grades, as well as normal brain tissue samples. Low-grade astrocytomas and normal brain tissue were found to express very low levels of laminin-9 and virtually no laminin-8. The levels of expression of both variants increased in Grade 3 gliomas, and as gliomas progressed to Grade 4, laminin-8 expression increased significantly and laminin-9 levels tended to decline.

The particular isoform (laminin-8 or laminin-9) predominantly expressed in Grade 4 gliomas appeared to correlate with time to recurrence after tumor-removal surgery. Among patients with high laminin-8 expression, tumors recurred about 4 months after surgery, compared with more than 11 months among patients whose tumors expressed laminin-9 predominantly. Patients with higher levels of laminin-8 also had shorter lengths of survival, averaging about 11 months, compared to 16.7 months when laminin-9 was predominant.

“Historically, the diagnosis of glioblastoma multiforme has come with an extremely poor prognosis, and traditional treatments have had very limited impact on patient survival,” said Keith L. Black, MD, director of the Maxine Dunitz Neurosurgical Institute, Cedars-Sinai’s Division of Neurosurgery and the Comprehensive Brain Tumor Program.

“Only in recent years have we begun to see progress, which is coming from a better understanding of genetic, molecular and immunologic changes that enable these deadly tumors to grow,” said Dr. Black, who holds the Ruth and Lawrence Harvey Chair in Neuroscience at the medical center. “Although a number of genes and proteins have been identified as having altered expression in glial tumors, few have become reliable indicators that can be used to improve diagnosis, prognosis and treatment.”

Julia Y. Ljubimova, MD, PhD, research scientist at the Institute and first author of the Cancer article, said the over-expression of laminin-8 may prove to be one of those important markers. Taken in consideration with other genes known to support tumor growth, it may give clinicians measurable clues for predicting recurrence and survival times of patients with high-grade gliomas.

“The switch from laminin-9 to laminin-8 expression, with its gradual increase from a low level of expression in low-grade tumors to a moderate level of expression in Grade 3 gliomas to a significantly high level of expression in 74 percent of GBMs, may be associated with the development of new tumor-feeding blood vessels, contributing to tumor aggressiveness,” she said. “Therefore, laminin-8 appears to be a promising marker of tumor progression. Perhaps more importantly, we hypothesize that if laminin-8 plays a major role in tumor progression and recurrence, it could be an important target for the development of new therapies.”

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Cedars-Sinai
Further information:
http://www.csmc.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>