Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental Toxins Can Cause Parkinson’s Disease Model in Rats

22.06.2004


Scientists have induced a movement disorder in rats that closely resembles Parkinson’s disease in humans. The study, published June 21, 2004, in the online edition of the Annals of Neurology, suggests that natural toxins found in the environment could contribute to the development of this debilitating movement disorder.

The compounds, called proteasome inhibitors, can be produced by bacteria and fungi. Man-made proteasome inhibitors may also find their way into the environment.

"These results suggest that we should determine how widespread these toxins are in the environment, how humans are exposed to them, and how such exposures correlate with the incidence of Parkinson’s disease," said lead author Kevin St. P. McNaught, PhD, of the Mount Sinai School of Medicine in New York City.



Ironically, proteasome inhibitors are currently being used as a treatment for cancer.

Parkinson’s disease afflicts up to a million Americans. Symptoms can include slowness of movement, tremor when at rest, muscle rigidity abnormalities of gait. Parkinson’s symptoms can be traced to the progressive death of nerve cells, most prominently in an area of the brain called the substantia nigra accompanied by a loss of the brain chemical dopamine.

What kills the nerve cells in Parkinson’s is not known, but it is suspected that the majority of cases are related to environmental factors that could include exposure to toxins.

Several animal models of Parkinson’s disease exist, but none recapitulate the features of the disease as closely as the present model, said C. Warren Olanow, M.D., Ph.D., chair of neurology at Mount Sinai, and a co-author of the study.

Proteasomes are responsible for eliminating abnormal proteins from cells, acting like a garbage disposal system. Based on growing evidence that proteasomes are defective in Parkinson’s disease, McNaught and colleagues examined the effects of experimentally interfering with proteasomes in laboratory rats, using both man-made and naturally occurring proteasome inhibitors.

About two weeks after receiving injections of proteasome inhibitors, the rats began to show symptoms similar to Parkinson’s disease, including slowness of movement, rigidity, and tremor. "These symptoms gradually worsened over a period of months, and could be reversed with drugs that are used to treat Parkinson’s patients," said McNaught.

Imaging studies of the living animals’ brains demonstrated changes in a pattern identical to that seen in Parkinson’s disease. Similarly, autopsy studies on the animals’ brains demonstrated a reduction in brain levels of dopamine and nerve cell loss in a pattern that closely resembled Parkinson’s disease.

"We create animal models of a disease for several reasons," said Dr. Olanow. "We can use the model to find underlying mechanisms responsible for the disease, identify targets for drug development, and test any new therapies. Our present model should facilitate accomplishing these goals in Parkinson’s disease."

McNaught notes that epoxomicin, one of the most potent proteasome inhibitors known, is produced by the common actinomycetes bacteria, which is found in soil and well water throughout the world.

"It’s only speculation at this point, but the fact that living in rural areas and drinking well water has been reported to be associated with higher rates of Parkinson’s disease could be related to higher levels of proteasome inhibitors found in these areas" said Dr. Olanow.

Article: “Systemic Exposure to Proteasome Inhibitors Causes a Progressive Model of Parkinson’s Disease,” Kevin St. P. McNaught, Daniel P. Pearl, Anna-Liisa Brownell, and C. Warren Olanow, Annals of Neurology; Published Online: June 21, 2004 (DOI: 10.1002/ana.20186).

The Annals of Neurology, the preeminent neurological journal worldwide, is published by the American Neurological Association, the world’s oldest and most prestigious neurological association. The 1,400 members of the ANA--selected from among the most respected academic neurologists and neuroscientists in North America and other countries--are devoted to furthering the understanding and treatment of nervous system disorders.

ANA | newswise
Further information:
http://www.aneuroa.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>