Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link Earth’s Ocean Currents and Jupiter’s Bands

22.06.2004


In a study published in Geophysical Research Letters (Vol. 31, No.18), University of South Florida College of Marine Science professor Boris Galperin and colleagues explain a link between the movement and appearance of ocean currents on Earth and the bands that characterize the surface of Jupiter and some other giant planets.

“The banded structure of Jupiter has long been a subject of fascination and intensive research,” says Galperin, a physical oceanographer who analyzes turbulence theory and applies theory and numerical modeling to analyze planetary processes. “The visible bands on Jupiter are formed by clouds moving along a stable set of alternating flows.”

Galperin and colleagues have discovered that the oceans on Earth also harbor stable alternating bands of current that, when modeled, reveal a striking similarity to the bands on Jupiter due to the same kinds of “jets.”



“We think this resemblance is more than just visual,” explains Galperin. “The energy spectrum of the oceanic jets obeys a power law that fits the spectra of zonal flows on the outer planets.”

The observation begs the question of whether the similar phenomena are rooted in similar physical forces.

“To answer this question,” says Galperin, “one needs to determine what physical processes govern the large-scale dynamics in both systems.”

According to Galperin, there is a similarity in the forcing agents for planetary and
oceanic circulations. The study maintains that both sets of zonal jets - the ocean’s bands of currents and the bands of Jupiter’s clouds - are the result of an underlying turbulent flow regime common in nature.

Comparing the energy spectra on giant planets and in the Earth’s oceans can yield valuable information about the transport properties of the oceans, says Galperin, especially about the strongest currents in the mid-depth ocean.

“The implications of these findings for climate research on Earth and the designs of future outer space observational studies are important,” he says.

Galperin and colleagues (Hideyuki Nakano, Meterological Research Institute, Ibaraki, Japan; Huei-Ping Huang, Lamont-Dougherty Earth Observatory of Columbia University, Palisades, New York; and Semion Sukoriansky, Center for Aeronautical Engineering Studies, Ben Gurion University of the Negev, Beer-Sheva, Israel) reported on their research at the 25th Conference of the International Union of Geodesy and Geophysics’s Committee on Mathematical Geophysics, held June 16-18 at Columbia University.

Funding for this study came from the Army Research Office and the Israel Science Foundation.

USF | newswise
Further information:
http://www.usf.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>