Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofilm of Salmonella

21.06.2004


Advances in the study of the salmonella bacteria, being undertaken at the Pamplona Institute of Agrobiotechnology and Natural Resources and led by professor Iñigo Lasa Uzcudun of the Public University of Navarre, have been recognised in the principal international magazine in the field of Microbiology, Molecular Microbiology, at a congress held recently in the German city of Heidelberg.

The Navarre researchers are analysing the role that a new family of Salmonella typhimurium proteins play in the biosynthesis of cellulose and in the formation of the biofilm of the salmonella bacteria.

Biofilms



The presence of biofilms is commonplace in nature. Who has not seen the mucous material on the inside of a vase after we have had flowers there some time, the slimy substance covering stones on riverbeds ... these are biofilms. The capacity for biofilm formation does not appear to be restricted to any one specific group of micro-organisms and, nowadays, it is believed that, if the environmental conditions are right, all micro-organisms are able to form biofilms.

Although the composition of biofilm is variable depending on the system under study, in general the main component of biofilm is water – as much as 97% of the total content. Apart from water and the bacterian cells, the biofilm matrix is a complex formed principally by exopolysacharrides.

Bacterian and infectious biofilms

Currently, with chronic infections such as those related to medical implants or other chronic conditions such as otitis media, pneumonia or chronic urinary infections, amongst others, direct analysis of the infected implants and tissues clearly show that the bacteria responsible for the infection grows adhering to the tissue or implant, producing biofilms.

The bacteria are protected, inside the biofilm, from the action of antibodies from attack by phagocytic cells and from antimicrobian treatment. Thus, they do not respond suitably to antibiotic treatament and produce recurrent episodes with the result that, in most cases, the only solution is the substitution of an implant. This is because the bacterias in the biofilm can be up to 1000 times more resistant to antibiotics than these same bacteria grown in a liquid medium.

In the last five years, many research groups have directed their efforts to identifying the genes responsible for the formation of the biofilms and those genes required to maintain the structure of the biofilm. In order to identify these genes, there has been a recent development in genomics and proteomics that has resulted in many of these groups are using microarrays or proteomic techniques for identifying the genes that express themselves in a different way in biofilm conditions or planktonic conditions, even though we are dealing with the same bacteria. Amongst these genes, a great proportion of genes are repeatedly found the function of which is unknown, which points to the existence of genes specific to the biofilm lifestyle and the phenotype of which has not been possible to visualise to date.

It is precisely on the Salmonella and Staphylococcus bacteria that Professor Lasa Uzkudun’s research group has been carrying studies. They have discovered a new family of proteins related to the formation of biofilms and which have been unidentified to date. This group of proteins may well explain the mechanism of the biofilm when colonising new surfaces, the method of adhering to different media, the regulation of the process of biofilm formation, etc., given that some of the discovered proteins have a precursor function in the formation of the biofilm.

Finally, it would appear logical that the formation of the biofilm be produced in response to the ambient conditions and so exist systems that transmit the signal for the surrounding environment to the interior of the bacteria in order to suit the expression of the genes to the new environment. Even so, despite all that has been learned in recent years about bacterian biofilms, what is the “Biofilm” phenotype still remains to be defined exactly. Only then can it be determined what are the physiological changes which take place therein and what are the genetic requirements and regulation mechanisms of such a process.

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>