Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental toxins can cause a model of Parkinson’s disease in rats

21.06.2004


Scientists have induced a movement disorder in rats that closely resembles Parkinson’s disease in humans. The study, published June 21, 2004, in the online edition of the Annals of Neurology, suggests that natural toxins found in the environment could contribute to the development of this debilitating movement disorder. The full study will be available via Wiley InterScience.

The compounds, called proteasome inhibitors, can be produced by bacteria and fungi. Man-made proteasome inhibitors may also find their way into the environment.

"These results suggest that we should determine how widespread these toxins are in the environment, how humans are exposed to them, and how such exposures correlate with the incidence of Parkinson’s disease," said lead author Kevin St. P. McNaught, PhD, of the Mount Sinai School of Medicine in New York City.



Ironically, proteasome inhibitors are currently being used as a treatment for cancer.

Parkinson’s disease afflicts up to a million Americans. Symptoms can include slowness of movement, tremor when at rest, muscle rigidity abnormalities of gait. Parkinson’s symptoms can be traced to the progressive death of nerve cells, most prominently in an area of the brain called the substantia nigra accompanied by a loss of the brain chemical dopamine.

What kills the nerve cells in Parkinson’s is not known, but it is suspected that the majority of cases are related to environmental factors that could include exposure to toxins.

Several animal models of Parkinson’s disease exist, but none recapitulate the features of the disease as closely as the present model, said C. Warren Olanow, M.D., Ph.D., chair of neurology at Mount Sinai, and a co-author of the study.

Proteasomes are responsible for eliminating abnormal proteins from cells, acting like a garbage disposal system. Based on growing evidence that proteasomes are defective in Parkinson’s disease, McNaught and colleagues examined the effects of experimentally interfering with proteasomes in laboratory rats, using both man-made and naturally occurring proteasome inhibitors.

About two weeks after receiving injections of proteasome inhibitors, the rats began to show symptoms similar to Parkinson’s disease, including slowness of movement, rigidity, and tremor. "These symptoms gradually worsened over a period of months, and could be reversed with drugs that are used to treat Parkinson’s patients," said McNaught.

Imaging studies of the living animals’ brains demonstrated changes in a pattern identical to that seen in Parkinson’s disease. Similarly, autopsy studies on the animals’ brains demonstrated a reduction in brain levels of dopamine and nerve cell loss in a pattern that closely resembled Parkinson’s disease.

"We create animal models of a disease for several reasons," said Dr. Olanow. "We can use the model to find underlying mechanisms responsible for the disease, identify targets for drug development, and test any new therapies. Our present model should facilitate accomplishing these goals in Parkinson’s disease."

McNaught notes that epoxomicin, one of the most potent proteasome inhibitors known, is produced by the common actinomycetes bacteria, which is found in soil and well water throughout the world.

"It’s only speculation at this point, but the fact that living in rural areas and drinking well water has been reported to be associated with higher rates of Parkinson’s disease could be related to higher levels of proteasome inhibitors found in these areas" said Dr. Olanow.

David Greenberg | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>