Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmless Virus Helps Slow HIV by Boosting Immune Proteins

18.06.2004


Iowa City Veterans Affairs (VA) Medical Center and University of Iowa (UI) researchers have unlocked part of the mystery of how a harmless virus known as GBV-C slows the progression of HIV and prolongs survival for many patients. The report appears in the June 19 issue of The Lancet, the leading British medical journal.

The findings provide the clearest insight yet into the biological mechanisms of GBV-C, a benign cousin of the hepatitis C virus. The virus infects almost all HIV patients at some point in their illness, but seems to cause no harm by itself. When present over several years, the virus appears to slow HIV growth and keep patients from developing full-blown AIDS.

A study by the Iowa City team and other collaborators published in the March 4, 2004, New England Journal of Medicine found that 75 percent of men with persistent GBV-C infection survived at least 11 years after their HIV diagnosis, versus only 16 percent of men who were initially co-infected with GBV-C but cleared the virus over time. The men had been studied before the advent of effective HIV medications.



In the new study, the Iowa City scientists infected white blood cells with GBV-C and HIV and compared them to cells infected only with HIV. The cells with GBV-C showed an increase in certain chemokines, or immune-system proteins. These proteins bind to the same white-blood-cell receptors-molecular “docking sites”-used by HIV. When the receptors aren’t available, HIV is unable to infect the cells.

When the researchers neutralized the chemokines with antibodies, GBV-C had no protective effect. HIV was free to enter host cells and proliferate.

“The next thing we have to do is determine a way to mimic the effect of this virus [GBV-C] and learn how to make it persist, so it can continue to induce these chemokines and these changes in the cell that help HIV,” said senior investigator Jack Stapleton, MD of VA and UI. Lead author was Jinhua Xiang, MD, who works with Stapleton at the Iowa City VA Medical Center.

GBV-C is related to the virus that causes hepatitis C. However, it does not infect liver cells, and causes no form of hepatitis. Rather, like HIV, it infects white blood cells-specifically, helper T cells. It is also contracted in the same way as HIV-through bodily fluids. About 10 to 15 percent of healthy blood donors either have active GBV-C infection or antibodies indicating past exposure. Almost 90 percent of people with HIV, according to some studies, show evidence of having been infected with GBV-C, but about half of these patients develop antibodies that knock the virus out of their system.

GBV-C was first identified by scientists in 1995, though studies suggest it has been around since ancient times. The idea that GBV-C may delay HIV disease progression and lower mortality has been debated among AIDS scientists because of mixed research findings. Ten studies, by eight different groups of researchers, including Stapleton’s, have shown improved survival or other clinical benefits among HIV patients who also have GBV-C. A few studies, though, showed no benefit.

The March 2004 study in the New England Journal of Medicine, co-authored by Stapleton and led by Carolyn Williams, PhD of the National Institute of Allergy and Infectious Diseases, was the most comprehensive GBV-C study to date. According to Stapleton, it showed that the duration of GBV-C infection may be critical in increasing survival, and this may help explain why other studies failed to find any effect.

“The survival advantage of GBV-C appears to depend on how long the GBV-C infection persists,” said Stapleton, a staff physician at the Iowa City VA Medical Center and professor of medicine at UI.

According to the new findings by Stapleton and Xiang’s team, GBV-C raises the blood levels of several chemokines, including one called RANTES (an acronym for “regulated on activation, normal T cell expressed and secreted”). This protein naturally occupies the same molecular docking site favored by HIV-a receptor called CCR5-and thus keeps the AIDS virus from binding to white blood cells and gaining a foothold in the body.

Drugs are under development that mimic the effect of these chemokines. However, Stapleton believes GBV-C itself should be seen as a potential HIV treatment because of its safety profile and because patients would need only a limited number of exposures to see benefits. He and his colleagues are now considering a clinical trial in which HIV patients would be infected with the virus.

“The fact that GBV-C is such a common infection, and that’s it’s been so extensively studied and not shown to cause any diseases, distinguishes it from other live viruses and makes it a more realistic option,” said Stapleton. He pointed out that the Food and Drug Administration does not require blood donations to be screened for GBV-C, even though about 1 in 70 units of blood in the United States contains the virus.

Currently there is only one medication available, Fuzeon, that blocks HIV at the early stage of the virus’ replication, before it even enters T cells. But this drug costs up to $25,000 per year and must be given by injection twice daily. Other drugs that work similarly are under development.

While many HIV patients today are helped by highly active antiretroviral therapy, or HAART, many become resistant to the drugs. Stapleton said the effect of GBV-C on HIV viral load is similar to that of HAART, though not as potent. The likelihood of resistance, however, is much lower with GBV-C.

“HIV probably doesn’t become resistant to GBV-C very easily, but it is possible to lose the virus,” said Stapleton. “We have to figure out how this can be prevented.”

Collaborating with Stapleton and Xiang on the study were Drs. Sarah George and Sabina Wunschmann, along with Qing Chang and Donna Klinzman. The work, presented in part in 2003 at the Tenth Conference on Retroviruses and Opportunistic Infections, was funded by VA, the National Institutes of Allergy and Infectious Diseases, the UI Center for Research Enhancement, and the UI Gene Therapy Center.




| newswise
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>